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Évariste Galois constructed a family of 3-transitive
groups in 1830. In 1861-1873 Émile Mathieu
discovered a series of multiply transitive groups which
are now named after him, including 5-transitive groups
of degrees 12 and 24.

John D. Dixon, Brian Mortimer

Organising groups by the transitivity of their actions is
as old as group theory itself. The idea that highly
transitive group actions are scarce is basic to the
discovery and classification of finite simple groups.

Marston Conder, Vaughan Jones

The devil of algebra fights with the angel of geometry.

Hermann Weyl (cited by Vladimir Arnold)
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DEFINITION

Let G be a group. One says that G is highly transitive
if G admits an action on an infinite set X such that for
any two finite ordered subsets {x1, . . . , xn} and
{y1, . . . , yn} of X of the same cardinality, there exists
g ∈ G such that g(xi) = yi , i = 1, . . . , n.

In other words, G is transitive on X and also on

X (n) = {(x1, . . . , xn) ∈ X n | xi 6= xj for i 6= j}

for any n = 1, 2, . . .
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FIRST EXAMPLES

The group Sym(Z) of permutations of Z is highly
transitive on Z (and uncountable).

The countable subgroup FSym(Z) ⊂ Sym(Z) of
finite permutations (i.e., permutations identical
outside some interval) is also highly transitive on
Z. It is locally finite, that is, any finitely generated
subgroup of FSym(Z) is finite. Hence, FSym(Z) is a
torsion group, that is, it contains no free subgroup.

The subgroup Alt(Z) ⊂ FSym(Z) of finite even
permutations is also highly transitive on Z. This
group is simple, that is, it has no proper normal
subgroup.
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GEOMETRY

Consider: an algebraically closed field k of
characteristic zero and the affine n-space An = An

k;

the additive (multiplicative) group Ga (Gm) of k;
a (reduced, irreducible) affine algebraic variety X
over k of dimension n ≥ 2;
a derivation of O(X ), that is, a k-linear map
∂ : O(X )→ O(X ) verifying the Leibniz rule:

∂(fg) = f ∂(g) + g∂(f );

assume ∂ is locally nilpotent (LND, for short):

∀a ∈ O(X ) ∃m ≥ 0 : ∂(m+1)(a) = 0;

the flow Φ∂ defined via

a ◦ Φ∂(t) = exp(t∂)(a) =
m∑

k=0

tk

k!
∂(k)(a), a ∈ O(X ).

Mikhail ZAIDENBERG HIGH TRANSITIVITY IN ALGEBRA AND GEOMETRY



GEOMETRY

Consider: an algebraically closed field k of
characteristic zero and the affine n-space An = An

k;
the additive (multiplicative) group Ga (Gm) of k;

a (reduced, irreducible) affine algebraic variety X
over k of dimension n ≥ 2;
a derivation of O(X ), that is, a k-linear map
∂ : O(X )→ O(X ) verifying the Leibniz rule:

∂(fg) = f ∂(g) + g∂(f );

assume ∂ is locally nilpotent (LND, for short):

∀a ∈ O(X ) ∃m ≥ 0 : ∂(m+1)(a) = 0;

the flow Φ∂ defined via

a ◦ Φ∂(t) = exp(t∂)(a) =
m∑

k=0

tk

k!
∂(k)(a), a ∈ O(X ).

Mikhail ZAIDENBERG HIGH TRANSITIVITY IN ALGEBRA AND GEOMETRY



GEOMETRY

Consider: an algebraically closed field k of
characteristic zero and the affine n-space An = An

k;
the additive (multiplicative) group Ga (Gm) of k;
a (reduced, irreducible) affine algebraic variety X
over k of dimension n ≥ 2;

a derivation of O(X ), that is, a k-linear map
∂ : O(X )→ O(X ) verifying the Leibniz rule:

∂(fg) = f ∂(g) + g∂(f );

assume ∂ is locally nilpotent (LND, for short):

∀a ∈ O(X ) ∃m ≥ 0 : ∂(m+1)(a) = 0;

the flow Φ∂ defined via

a ◦ Φ∂(t) = exp(t∂)(a) =
m∑

k=0

tk

k!
∂(k)(a), a ∈ O(X ).

Mikhail ZAIDENBERG HIGH TRANSITIVITY IN ALGEBRA AND GEOMETRY



GEOMETRY

Consider: an algebraically closed field k of
characteristic zero and the affine n-space An = An

k;
the additive (multiplicative) group Ga (Gm) of k;
a (reduced, irreducible) affine algebraic variety X
over k of dimension n ≥ 2;
a derivation of O(X ), that is, a k-linear map
∂ : O(X )→ O(X ) verifying the Leibniz rule:

∂(fg) = f ∂(g) + g∂(f );

assume ∂ is locally nilpotent (LND, for short):

∀a ∈ O(X ) ∃m ≥ 0 : ∂(m+1)(a) = 0;

the flow Φ∂ defined via

a ◦ Φ∂(t) = exp(t∂)(a) =
m∑

k=0

tk

k!
∂(k)(a), a ∈ O(X ).

Mikhail ZAIDENBERG HIGH TRANSITIVITY IN ALGEBRA AND GEOMETRY



GEOMETRY

Consider: an algebraically closed field k of
characteristic zero and the affine n-space An = An

k;
the additive (multiplicative) group Ga (Gm) of k;
a (reduced, irreducible) affine algebraic variety X
over k of dimension n ≥ 2;
a derivation of O(X ), that is, a k-linear map
∂ : O(X )→ O(X ) verifying the Leibniz rule:

∂(fg) = f ∂(g) + g∂(f );

assume ∂ is locally nilpotent (LND, for short):

∀a ∈ O(X ) ∃m ≥ 0 : ∂(m+1)(a) = 0;

the flow Φ∂ defined via

a ◦ Φ∂(t) = exp(t∂)(a) =
m∑

k=0

tk

k!
∂(k)(a), a ∈ O(X ).

Mikhail ZAIDENBERG HIGH TRANSITIVITY IN ALGEBRA AND GEOMETRY



EXAMPLES

The flow Φ∂ of an LND ∂ gives rise to a Ga-subgroup
of the automorphism group Aut(X ).
Any regular Ga-action on X arizes in this way.

Let X = A2 = Spec(k[x , y ]). Then ∂ = ∂/∂y is an
LND with the flow of shifts

exp(t∂) : (x , y) 7→ (x , y + t) .

Take P(x) ∈ ker(∂/∂y) = k[x ]. Then ∂P := P(x)∂/∂y
is an LND. It generates the flow of shears

exp(t∂P) : (x , y) 7→ (x , y + tP(x)).
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THE SPECIAL AUTOMORPHISM GROUP

DEFINITION
The SPECIAL AUTOMORPHISM GROUP of X is the
subgroup SAut(X ) ⊂ Aut(X ) generated by all the
Ga-subgroups:

SAut(X ) = 〈H = exp(t∂) | ∂ ∈ LND(O(X ))〉

THEOREM (ARZHANTSEV-FLENNER-KALIMAN-
KUTZSCHEBAUCH-Z ′13)
Assume SAut(X ) acts transitively on X . Then SAut(X )
is highly transitive on X .

THEOREM (BOREL-KNOP) An algebraic group
cannot act 3-transitively on an affine variety.
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FINITENESS CONJECTURE

CONJECTURE (ARZHANTSEV-KUYUMJIYAN-Z
(AKZ) ′19)
If SAut(X ) acts with an open orbit O then there is a
finite collection {H1, . . . ,HN} of Ga-subgroups of
Aut(X ) such that the group G = 〈H1, . . . ,HN〉 is highly
transitive on O.

DEFINITIONS
An affine variety X of dimension n with an action
of the n-torus T = Gn

m is called toric if T acts on X
with an open orbit.

X is called smooth in codimension 2 if the
singular locus of X has codimension ≥ 3.
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TWO THEOREMS

THEOREM 1 (AKZ ′19) Let X be a toric affine
variety with no torus factor. If X is smooth in
codimension two then there exists a finite collection of
root Ga-subgroups U1, . . . ,Um of Aut(X ) such that
G = 〈U1, . . . ,Um〉 acts highly transitively on the smooth
locus Xreg.

THEOREM 2 (AKZ ′19; ANDRIST ′19) For any n ≥ 2
one can find three Ga-subgroups H1,H2,H3 ⊂ Aut(An)
such that G = 〈H1,H2,H3〉 is highly transitive on An.

REMARK Andrist found 3 explicit LND’s on An, n ≥ 2,
which generate such Ga-subgroups H1,H2,H3.
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ALGEBRA

QUESTION (DEMAILLY) What is the growth rate of
a group as in Theorems 1–2?

Before giving a partial answer, we survey on highly
transitive groups and the group growth.

THEOREM (DARJI–MITCHELL ′08) For any
α ∈ Sym(Z) \ {id} there exists β ∈ Sym(Z) such that the
subgroup G = 〈α, β〉 is highly transitive on Z.
If α has finite support, then one can take a shift
x 7→ x + n for β.
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MORE EXAMPLES OF HIGH TRANSITIVITY

The following countable groups are highly transitive:

The nonabelian free group Fn, n ≥ 2
(McDONOUGH ′77, CAMERON ′87, et al.);

F∞ = [F2,F2] E F2;
Out(Fn) = Aut(Fn)/Inn(Fn) (GARION–GLASNER
′13);
the free product G1 ∗ G2 with nontrivial G1 and G2,
except for the infinite dihedral group Z/2Z ∗ Z/2Z
(GLASS–McCLEARY ′91, GUNHOUS ′92,
HICKIN ′92, FIMA–MOON ′13);
in particular, PSL(2,Z) = Z/2Z ∗ Z/3Z. However, it
is unknown whether PSL(2,K ) is highly transitive
for a countable field K (HULL–OSIN ′16);
certain amalgams, HNN-extensions, and groups
acting on trees (FIMA–MOON–STALDER ′15).
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TRANSITIVITY OF SUBNORMAL SUBGROUPS

LEMMA 1 (DIXON-MORTIMER) Let G ⊂ Sym(X ),
and let 1 6= N E G be a nontrivial normal subgroup.
(a) If G is 2-transitive on X then N is transitive on X .
(b) If G is highly transitive on X then N is.
(c) No abelian group is highly transitive.

Proof of (a): G preserves the partition of X into the
orbits of N on X . If this partition is nontrivial, G
cannot be 2-transitive. (c) follows from (a).

DEFINITION A subgroup N ⊂ G is called subnormal if
there exists a series

G D N1 D N2 D . . .D Nk = N .

COROLLARY 1 Let N ⊂ G be a nontrivial subnormal
subgroup. If G is highly transitive on X then N is.
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NON-HIGHLY TRANSITIVE GROUPS

COROLLARY 2 A virtually solvable group cannot be
highly transitive.

Proof: G is virtually solvable implies G has a solvable
normal subgroup N of finite index. This N can be
obtained from abelian groups using extensions. Hence
N has a nontrivial abelian subnormal subgroup A, and
also G has. By Lemma 1, if G is highly transitive then
A is, in contradiction with (c) of Lemma 1.

Mikhail ZAIDENBERG HIGH TRANSITIVITY IN ALGEBRA AND GEOMETRY



NON-HIGHLY TRANSITIVE GROUPS

COROLLARY 2 A virtually solvable group cannot be
highly transitive.

Proof: G is virtually solvable implies G has a solvable
normal subgroup N of finite index. This N can be
obtained from abelian groups using extensions. Hence
N has a nontrivial abelian subnormal subgroup A, and
also G has. By Lemma 1, if G is highly transitive then
A is, in contradiction with (c) of Lemma 1.

Mikhail ZAIDENBERG HIGH TRANSITIVITY IN ALGEBRA AND GEOMETRY



GROUPS OF POLYNOMIAL GROWTH

DEFINITION A finitely generated group G has
polynomial growth if the “volume” V (r) of the ball of
radius r in G centered at eG (with respect to the word
metric) is at most polynomial:

V (r) ≤ cst · rN , ∃N ≥ 0.

Recall that V (r) is the number of elements of G
representable by reduced words of length at most r in
the given generators. The choice of generators is
irrelevant, up to a constant factor.
GROMOV’S THEOREM A finitely generated group G
has polynomial growth if and only if G is virtually
nilpotent.
From Corollary 2 we deduce
COROLLARY 3 A finitely generated group G of
polynomial growth cannot be highly transitive.
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GROUPS OF EXPONENTIAL GROWTH

DEFINITION A finitely generated group G has
exponential growth if

V (r) ≥ cst eγ, ∃γ ≥ 1.

The free group Fk , k ≥ 2, is of exponential growth.
Any finitely generated group containing F2 is as well.
THEOREM (MILNOR–WOLF ′68) Any finitely
generated virtually solvable group which is not
virtually nilpotent has exponential growth.
THEOREM (GRIGORCHUK ′83) There exist finitely
generated groups of intermediate growth, that is,
whose growth is neither exponential, nor polynomial.
No finitely presented such group is known.
QUESTION: Can a highly transitive, finitely generated
group be of intermediate growth?
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TITS ALTERNATIVE

THEOREM (TITS ALTERNATIVE, TITS ′72)
Let H ⊂ GL(n,K ) be a finitely generated (arbitrary, if
char(K ) = 0) linear group over a field K . Then either
H is virtually solvable, or H contains a copy of F2. In
particular, G has either polynomial, or exponential
growth.

DEFINITION A group G satisfies (restricted) Tits
alternative if any (finitely generated, respectively)
subgroup H of G either is virtually solvable, or
contains a copy of F2.

COROLLARY 4 Let a group G satisfies the Tits
alternative, and let a subgroup H ⊂ G it highly
transitive. Then H ⊃ F2. In particular, H has
exponential growth.

Mikhail ZAIDENBERG HIGH TRANSITIVITY IN ALGEBRA AND GEOMETRY



TITS ALTERNATIVE

THEOREM (TITS ALTERNATIVE, TITS ′72)
Let H ⊂ GL(n,K ) be a finitely generated (arbitrary, if
char(K ) = 0) linear group over a field K . Then either
H is virtually solvable, or H contains a copy of F2. In
particular, G has either polynomial, or exponential
growth.

DEFINITION A group G satisfies (restricted) Tits
alternative if any (finitely generated, respectively)
subgroup H of G either is virtually solvable, or
contains a copy of F2.

COROLLARY 4 Let a group G satisfies the Tits
alternative, and let a subgroup H ⊂ G it highly
transitive. Then H ⊃ F2. In particular, H has
exponential growth.

Mikhail ZAIDENBERG HIGH TRANSITIVITY IN ALGEBRA AND GEOMETRY



TITS ALTERNATIVE

THEOREM (TITS ALTERNATIVE, TITS ′72)
Let H ⊂ GL(n,K ) be a finitely generated (arbitrary, if
char(K ) = 0) linear group over a field K . Then either
H is virtually solvable, or H contains a copy of F2. In
particular, G has either polynomial, or exponential
growth.

DEFINITION A group G satisfies (restricted) Tits
alternative if any (finitely generated, respectively)
subgroup H of G either is virtually solvable, or
contains a copy of F2.

COROLLARY 4 Let a group G satisfies the Tits
alternative, and let a subgroup H ⊂ G it highly
transitive. Then H ⊃ F2. In particular, H has
exponential growth.

Mikhail ZAIDENBERG HIGH TRANSITIVITY IN ALGEBRA AND GEOMETRY



BACK TO GEOMETRY

THEOREM The Tits alternative holds for the
following groups:

the Gromov hyperbolic groups;

Out(Fn) (BESTVINA-FEIGHN-HANDEL ′00);
the mapping class groups Out(π1(R)) of a compact
Riemann surface R (IVANOV and McCARTHY
′84-′85).

THEOREM Given a projective variety V , consider the
group Bir(V ) of birational transformations of V . Then
Bir(V ) verifies the Tits alternative if either

dim(V ) = 2 (LAMY-CANTAT-URECH ′01-′05-′18),
or
V is a hyperkähler variety (OGUISO ′06).
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DEMAILLY’s PROBLEM

The last theorem allows to answer Demailly’s question
in these two cases:

COROLLARY Let V be an algebraic surface or a
hyperkähler projective variety. If a subgroup
G ⊂ Bir(V ) is highly transitive then G contains a copy
of F2, and so, has exponential growth.

It is unknown whether Tits’ alternative holds for
Aut(A3).

EXAMPLE (LEWIS-PERRY-STRAUB ′19) The group
G = 〈H1,H2〉 generated by the Ga-subgroups

H1 = {(x , y) 7→ (x , y + λx)}, H2 = {(x , y) 7→ (x + µy 2, y)}

is highly transitive on A2 \ {0}. It is easily seen that
G ⊃ F2.
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RECENT RESULTS

CONJECTURE Let X be an affine variety of
dimension ≥ 2 defined over an algebraically closed
field of characteristic zero. Consider the group

G = 〈U1, ...,Us〉

generated by Ga-subgroups U1, ...Us of Aut(X ). Then
the Tits alternative holds for G . If G is highly
transitive, then G contains a free subgroup F2,
and so, has exponential growth.

We prove this conjecture in the case of toric affine
varieties.
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TORIC AFFINE VARIETIES

Consider:
M – a lattice of rank n ≥ 2;

the Q-vector space MQ = M ⊗Q;
the weight cone σ∨ ⊂ MQ – a rational polyhedral
convex cone with a nonempty interior;
a base of M making M an integer lattice of rank n;
for any m = (m1, . . . ,mn) ∈ M, the Laurent
monomial χm = xm1

1 · · · xmn
n ;

the graded affine algebra

A =
⊕

m∈M∩σ∨

kχm with χm · χm′
= χm+m′

.
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TORIC AFFINE VARIETIES

Consider further:
the toric affine variety X = SpecA, dim X = n;

the action on X of the n-torus T = Gn
m defined by

the M-grading on A = O(X ).

REMARK

X is normal, and any normal toric affine variety
arises in this way.
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DUAL CONE

Consider also the following associated objects:

the dual lattice N = Hom (M ,Z);

the dual cone

σ ⊂ NQ, σ = {x ∈ NQ | 〈x , y〉 ≥ 0 ∀y ∈ σ∨};

the set Ξ = {ρ1, . . . , ρk} of ray generators of σ, that
is, of the primitive lattice vectors on the extremal
rays of σ. It is dual to the set of facets of σ∨.

LEMMA TFAE:
σ∨ is a pointed cone, that is, σ∨ contains no line;
σ is of full dimension, that is, Ξ contains a basis of
NQ;
X has no toric factor, that is, X cannot be
decomposed into a product Gm × Y , where Y is a
toric variety of dimension n − 1.
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HOMOGENEOUS DERIVATIONS

DEFINITIONS

A derivation ∂ ∈ Der (A) is called homogeneous if ∂
respects the grading, that is, sends any graded
piece to another one.

Any homogeneous derivation is of the form
∂ = λ∂ρ,e where ρ ∈ N, e ∈ M,

∂ρ,e(χm) = 〈ρ,m〉χm+e ∀m ∈ M .

The lattice vector e ∈ M is called the degree of
∂ρ,e.
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COMMUTATORS OF LND’s

LEMMA (LIENDO ′10) A homogeneous derivation ∂
is locally nilpotent if and only if ∂ = cst · ∂ρi ,e for a
Demazure root e with 〈ρi , e〉 = −1.

LEMMA (ROMASKEVICH ′14)
Let ∂ = ∂ρ,e and ∂′ = ∂ρ′,e′. Then [∂, ∂′] = ∂ρ̂,ê where

ê = e + e ′ and ρ̂ = 〈ρ, e ′〉ρ′ − 〈ρ′, e〉ρ ∈ N .

If ρ̂ 6= 0 then deg ([∂, ∂′]) = e + e ′ ∈ M.
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DEMAZURE ROOTS

DEFINITIONS

The Demazure facet Si is the convex rational
polyhedron in the affine hyperplane
Hi = {〈ρi , e〉 = −1} defined by the inequalities

〈ρj , e〉 > 0 ∀j 6= i .

It is parallel to the ith facet {〈ρi , e〉 = 0} of the
cone σ∨.

The Demazure roots belonging to ρi are the
lattice vectors from Si .
The Ga-subgroup Ue = exp(k∂ρi ,e) is called the root
subgroup associated with a Demazure root e ∈ Si .
For e, e ′ ∈ Si the root subgroups Ue and Ue′

commute.
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TITS’ ALTERNATIVE FOR TORIC VARIETIES

THEOREM (Arzhantsev-Z ′20) Let X be a toric affine
variety with no torus factor, and let a subgroup G of
Aut(X ) be generated by root subgroups U1, . . . ,Us.
Then either G is a unipotent algebraic group, or G
contains a free subgroup of rank two.

It has polynomial growth in the former case and
exponential in the latter case. If it is highly transitive,
then it contains F2.

PROPOSITION 1 Consider the group H = 〈U1,U2〉
generated by the root subgroups Ui = exp(t∂i), i = 1, 2,
associated with two different ray generators, say, ρ1
and ρ2, respectively. Then either H is a unipotent
algebraic group, or the subgroup 〈u1, u2〉 is a free group
of rank two for a very general pair (u1, u2) ∈ U1 × U2.
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SCKETCH OF THE PROOF

With our choice of X , the Cox ring of O(X ) is the
polynomial ring in k variables. This allows to reduce
to the setting where X = Ak and

u1 = (x1 +sxcN1, x2, . . . , xk), u2 = (x1, x2 +txdN2, x3, . . . , xk),

with s, t ∈ k and monomials N1,N2 ∈ k[x3, . . . , xk ].

By the Jung-van der Kulk Theorem,

GL2(K ) = Aff2(K ) ∗C Jonq(K ),

where
K = k(s, t, x3, . . . , xk);
Jonq(K ) is the de Jonqières triangular subgroup;
C = Aff2(K ) ∩ Jonq(K ).
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SCKETCH OF THE PROOF

If c ≥ 2 and d ≥ 2 then H = U1 ∗U2 and 〈u1, u2〉 = F2
for any pair of nonunit elements (u1, u2).

The latter remains true for general (u1, u2)
provided c ≥ 2, d ≥ 1.
If c = d = 1 then for a suitable (u1, u2), the group
〈u1, u2〉 surjects onto SL2(Z) and so, contains a free
subgroup of rank two.
If

(∗) min{c , d} = 0

then H is a unipotent algebraic group.
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SCKETCH OF THE PROOF

Let as before

G = 〈U1, ...Us〉, where Ui = exp(t∂i).

The Lie algebra L generated by the root derivations ∂i ,
i = 1, . . . , s, might contain extra root derivations.

Let
Ri be the set of Demazure roots eij ∈ Si of X such that
∂ρi ,eij ∈ L, j = 1, . . . ,#(Ri). Let R =

⋃r
i=1 Ri .

PROPOSITION 2 Suppose (∗) holds for any
ei ∈ Ri , ej ∈ Rj , i 6= j , that is,

min{〈ρi , ej〉, 〈ρj , ei〉} = 0.

Then G is a unipotent algebraic group.
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SCKETCH OF THE PROOF

DEFINITION A finite sequence of root derivations

D = (D1, . . . ,Dt ,Dt+1) where Di = ∂ρj(i), ej(i),i ∈ Lj(i)

forms a cycle if Dt+1 = D1 and

〈ρj(i+1), ej(i),i〉 > 0 ∀i = 1, . . . , t.

If this inequality holds and ρj(t+1) = ρj(1) but possibly
Dt+1 6= D1, we say that D is a pseudo-cycle.

LEMMA TFAE:
L contains no pseudo-cycle;
L contains no cycle;
L contains no 2-cycle;
(∗) holds ∀ei ∈ Ri , ej ∈ Rj , i 6= j .
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SCKETCH OF THE PROOF

Under the assumption that L contains no cycle,
Proposition 2 is proven by Arzhantsev, Liendo, and
Stasyuk, arXiv 2019. Using the above lemma, we
rewrite their proof as follows.

Suppose (∗) holds. Consider the abelian Lie
subalgebras of L,

Li = 〈∂ρi ,e | e ∈ Ri〉, i = 1, . . . , k .

Due to (∗), for any i 6= j there is an alternative:
either 〈ρi , ej〉 = 0 = 〈ρj , ei〉 ∀ei ∈ Ri , ∀ej ∈ Rj ,
or, up to a transposition, ∃ei ∈ Ri : 〈ρj , ei〉 > 0, and
so, 〈ρi , ej〉 = 0 ∀ ej ∈ Rj .
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SCKETCH OF THE PROOF

In the first case [Li , Lj ] = 0, and in the second
0 6= [Li , Lj ] ⊂ Li . Anyway, we have L =

⊕r
i=1 Li and

dim(L) =
r∑

i=1

dim(Li) =
r∑

i=1

card (Ri) = card (R).

Let Γk be the directed graph on the vertices L1, . . . , Lk
with edges [Lj , Li ] oriented as follows:

[Lj → Li ] iff 0 6= [Li , Lj ] ⊂ Li .

If [Li , Lj ] = 0, there is no edge [Lj , Li ] in Γk .
Due to Lemma, L contains no pseudo-cycle. This
means that Γk is acyclic, that is, has no oriented cycle.
Then any connected component of Γk has a sink. We
may assume L1 to be a sink.
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SCKETCH OF THE PROOF

Deleting this sink L1 and all the incident edges yields
again an acyclic directed graph Γk−1, which in turn has
a sink, which we take for L2.

Finally, we renumerate
the vertices in such a way that
[Li , L1] ⊂ L1, i = 2, . . . , r ,
[Li , L2] ⊂ L2, i = 3, . . . , r ,
. . .
[Lr , Lr−1] ⊂ Lr−1.
We show that

dim(Li) < +∞ ∀i = 1, . . . , k;
for N � 1, ad(Lj)

N(Li) = 0 ∀j ≥ i , and so,
ad(L)Nk(L) = 0.

It follows that L is nilpotent and finite-dimensional.
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