HIGH TRANSITIVITY IN ALGEBRA AND GEOMETRY

Mikhail ZAIDENBERG

March 12, 2020

Évariste Galois constructed a family of 3-transitive groups in 1830. In 1861-1873 Émile Mathieu discovered a series of multiply transitive groups which are now named after him, including 5-transitive groups of degrees 12 and 24.

John D. Dixon, Brian Mortimer

Organising groups by the transitivity of their actions is as old as group theory itself. The idea that highly transitive group actions are scarce is basic to the discovery and classification of finite simple groups.

Marston Conder, Vaughan Jones
The devil of algebra fights with the angel of geometry.
Hermann Weyl (cited by Vladimir Arnold)

DEFINITION

Let G be a group. One says that G is highly transitive if G admits an action on an infinite set X such that for any two finite ordered subsets $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ of X of the same cardinality, there exists $g \in G$ such that $g\left(x_{i}\right)=y_{i}, i=1, \ldots, n$.

DEFINITION

Let G be a group. One says that G is highly transitive if G admits an action on an infinite set X such that for any two finite ordered subsets $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ of X of the same cardinality, there exists $g \in G$ such that $g\left(x_{i}\right)=y_{i}, i=1, \ldots, n$. In other words, G is transitive on X and also on

$$
X^{(n)}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \mid x_{i} \neq x_{j} \text { for } i \neq j\right\}
$$

for any $n=1,2, \ldots$

FIRST EXAMPLES

- The group $\operatorname{Sym}(\mathbb{Z})$ of permutations of \mathbb{Z} is highly transitive on \mathbb{Z} (and uncountable).

FIRST EXAMPLES

- The group $\operatorname{Sym}(\mathbb{Z})$ of permutations of \mathbb{Z} is highly transitive on \mathbb{Z} (and uncountable).
- The countable subgroup $\operatorname{FSym}(\mathbb{Z}) \subset \operatorname{Sym}(\mathbb{Z})$ of finite permutations (i.e., permutations identical outside some interval) is also highly transitive on \mathbb{Z}. It is locally finite, that is, any finitely generated subgroup of $\operatorname{FSym}(\mathbb{Z})$ is finite. Hence, $\operatorname{FSym}(\mathbb{Z})$ is a torsion group, that is, it contains no free subgroup.

FIRST EXAMPLES

- The group $\operatorname{Sym}(\mathbb{Z})$ of permutations of \mathbb{Z} is highly transitive on \mathbb{Z} (and uncountable).
- The countable subgroup $\operatorname{FSym}(\mathbb{Z}) \subset \operatorname{Sym}(\mathbb{Z})$ of finite permutations (i.e., permutations identical outside some interval) is also highly transitive on \mathbb{Z}. It is locally finite, that is, any finitely generated subgroup of $\operatorname{FSym}(\mathbb{Z})$ is finite. Hence, $\mathrm{FSym}(\mathbb{Z})$ is a torsion group, that is, it contains no free subgroup.
- The subgroup $\operatorname{Alt}(\mathbb{Z}) \subset \operatorname{FSym}(\mathbb{Z})$ of finite even permutations is also highly transitive on \mathbb{Z}. This group is simple, that is, it has no proper normal subgroup.

GEOMETRY

- Consider: an algebraically closed field \mathbb{k} of characteristic zero and the affine n-space $\mathbb{A}^{n}=\mathbb{A}_{k}^{n}$;

GEOMETRY

- Consider: an algebraically closed field \mathbb{k} of characteristic zero and the affine n-space $\mathbb{A}^{n}=\mathbb{A}_{\mathbb{k}}^{n}$;
- the additive (multiplicative) group $\mathbb{G}_{a}\left(\mathbb{G}_{m}\right)$ of \mathbb{k};

GEOMETRY

- Consider: an algebraically closed field \mathbb{k} of characteristic zero and the affine n-space $\mathbb{A}^{n}=\mathbb{A}_{\mathbb{k}}^{n}$;
- the additive (multiplicative) group $\mathbb{G}_{a}\left(\mathbb{G}_{m}\right)$ of \mathbb{k};
- a (reduced, irreducible) affine algebraic variety X over \mathbb{k} of dimension $n \geq 2$;

GEOMETRY

- Consider: an algebraically closed field \mathbb{k} of characteristic zero and the affine n-space $\mathbb{A}^{n}=\mathbb{A}_{k}^{n}$;
- the additive (multiplicative) group $\mathbb{G}_{a}\left(\mathbb{G}_{m}\right)$ of \mathbb{k};
- a (reduced, irreducible) affine algebraic variety X over \mathbb{k} of dimension $n \geq 2$;
- a derivation of $\mathcal{O}(X)$, that is, a \mathbb{k}-linear map $\partial: \mathcal{O}(X) \rightarrow \mathcal{O}(X)$ verifying the Leibniz rule:

$$
\partial(f g)=f \partial(g)+g \partial(f) ;
$$

- assume ∂ is locally nilpotent (LND, for short):

$$
\forall a \in O(X) \exists m \geq 0: \partial^{(m+1)}(a)=0
$$

GEOMETRY

- Consider: an algebraically closed field \mathbb{k} of characteristic zero and the affine n-space $\mathbb{A}^{n}=\mathbb{A}_{k}^{n}$;
- the additive (multiplicative) group $\mathbb{G}_{a}\left(\mathbb{G}_{m}\right)$ of \mathbb{k};
- a (reduced, irreducible) affine algebraic variety X over \mathbb{k} of dimension $n \geq 2$;
- a derivation of $\mathcal{O}(X)$, that is, a \mathbb{k}-linear map $\partial: \mathcal{O}(X) \rightarrow \mathcal{O}(X)$ verifying the Leibniz rule:

$$
\partial(f g)=f \partial(g)+g \partial(f) ;
$$

- assume ∂ is locally nilpotent (LND, for short):

$$
\forall a \in O(X) \exists m \geq 0: \partial^{(m+1)}(a)=0
$$

- the flow Φ_{∂} defined via

$$
a \circ \Phi_{\partial}(t)=\exp (t \partial)(a)=\sum_{k=0}^{m} \frac{t^{k}}{k!} \partial^{(k)}(a), \quad a \in \mathcal{O}(X)
$$

EXAMPLES

The flow Φ_{∂} of an LND ∂ gives rise to a \mathbb{G}_{a}-subgroup of the automorphism group $\operatorname{Aut}(X)$.
Any regular \mathbb{G}_{a}-action on X arizes in this way.

EXAMPLES

The flow Φ_{∂} of an LND ∂ gives rise to a \mathbb{G}_{a}-subgroup of the automorphism group $\operatorname{Aut}(X)$.
Any regular \mathbb{G}_{a}-action on X arizes in this way.

- Let $X=\mathbb{A}^{2}=\operatorname{Spec}(\mathbb{k}[x, y])$. Then $\partial=\partial / \partial y$ is an LND with the flow of shifts

$$
\exp (t \partial):(x, y) \mapsto(x, y+t)
$$

EXAMPLES

The flow Φ_{∂} of an LND ∂ gives rise to a \mathbb{G}_{a}-subgroup of the automorphism group $\operatorname{Aut}(X)$.
Any regular \mathbb{G}_{a}-action on X arizes in this way.

- Let $X=\mathbb{A}^{2}=\operatorname{Spec}(\mathbb{k}[x, y])$. Then $\partial=\partial / \partial y$ is an LND with the flow of shifts

$$
\exp (t \partial):(x, y) \mapsto(x, y+t)
$$

- Take $P(x) \in \operatorname{ker}(\partial / \partial y)=\mathbb{k}[x]$. Then $\partial_{P}:=P(x) \partial / \partial y$ is an LND. It generates the flow of shears

$$
\exp \left(t \partial_{P}\right):(x, y) \mapsto(x, y+t P(x))
$$

EXAMPLES

The flow Φ_{∂} of an LND ∂ gives rise to a \mathbb{G}_{a}-subgroup of the automorphism group $\operatorname{Aut}(X)$.
Any regular \mathbb{G}_{a}-action on X arizes in this way.

- Let $X=\mathbb{A}^{2}=\operatorname{Spec}(\mathbb{k}[x, y])$. Then $\partial=\partial / \partial y$ is an LND with the flow of shifts

$$
\exp (t \partial):(x, y) \mapsto(x, y+t)
$$

- Take $P(x) \in \operatorname{ker}(\partial / \partial y)=\mathbb{k}[x]$. Then $\partial_{P}:=P(x) \partial / \partial y$ is an LND. It generates the flow of shears

$$
\exp \left(t \partial_{P}\right):(x, y) \mapsto(x, y+t P(x))
$$

THE SPECIAL AUTOMORPHISM GROUP

DEFINITION
The SPECIAL AUTOMORPHISM GROUP of X is the subgroup $\operatorname{SAut}(X) \subset \operatorname{Aut}(X)$ generated by all the \mathbb{G}_{a}-subgroups:

$$
\operatorname{SAut}(X)=\langle H=\exp (t \partial) \mid \partial \in \operatorname{LND}(\mathcal{O}(X))\rangle
$$

THE SPECIAL AUTOMORPHISM GROUP

DEFINITION

The SPECIAL AUTOMORPHISM GROUP of X is the subgroup $\operatorname{SAut}(X) \subset \operatorname{Aut}(X)$ generated by all the \mathbb{G}_{a}-subgroups:

$$
\operatorname{SAut}(X)=\langle H=\exp (t \partial) \mid \partial \in \operatorname{LND}(\mathcal{O}(X))\rangle
$$

THEOREM (ARZHANTSEV-FLENNER-KALIMAN-KUTZSCHEBAUCH-Z '13)
Assume $\operatorname{SAut}(X)$ acts transitively on X. Then $\operatorname{SAut}(X)$ is highly transitive on X.

THE SPECIAL AUTOMORPHISM GROUP

DEFINITION

The SPECIAL AUTOMORPHISM GROUP of X is the subgroup $\operatorname{SAut}(X) \subset \operatorname{Aut}(X)$ generated by all the \mathbb{G}_{a}-subgroups:

$$
\operatorname{SAut}(X)=\langle H=\exp (t \partial) \mid \partial \in \operatorname{LND}(\mathcal{O}(X))\rangle
$$

THEOREM (ARZHANTSEV-FLENNER-KALIMAN-KUTZSCHEBAUCH-Z '13)
Assume $\operatorname{SAut}(X)$ acts transitively on X. Then $\operatorname{SAut}(X)$ is highly transitive on X.

THEOREM (BOREL-KNOP) An algebraic group cannot act 3-transitively on an affine variety.

FINITENESS CONJECTURE

CONJECTURE (ARZHANTSEV-KUYUMJIYAN-Z (AKZ) '19) If $\operatorname{SAut}(X)$ acts with an open orbit \mathscr{O} then there is a finite collection $\left\{H_{1}, \ldots, H_{N}\right\}$ of \mathbb{G}_{a}-subgroups of Aut (X) such that the group $G=\left\langle H_{1}, \ldots, H_{N}\right\rangle$ is highly transitive on \mathscr{O}.

FINITENESS CONJECTURE

CONJECTURE (ARZHANTSEV-KUYUMJIYAN-Z (AKZ) '19)
If $\operatorname{SAut}(X)$ acts with an open orbit \mathscr{O} then there is a finite collection $\left\{H_{1}, \ldots, H_{N}\right\}$ of \mathbb{G}_{a}-subgroups of Aut (X) such that the group $G=\left\langle H_{1}, \ldots, H_{N}\right\rangle$ is highly transitive on \mathscr{O}.

DEFINITIONS

- An affine variety X of dimension n with an action of the n-torus $\mathbb{T}=\mathbb{G}_{m}^{n}$ is called toric if \mathbb{T} acts on X with an open orbit.

FINITENESS CONJECTURE

CONJECTURE (ARZHANTSEV-KUYUMJIYAN-Z (AKZ) '19)
If $\operatorname{SAut}(X)$ acts with an open orbit \mathscr{O} then there is a finite collection $\left\{H_{1}, \ldots, H_{N}\right\}$ of \mathbb{G}_{a}-subgroups of Aut (X) such that the group $G=\left\langle H_{1}, \ldots, H_{N}\right\rangle$ is highly transitive on \mathscr{O}.

DEFINITIONS

- An affine variety X of dimension n with an action of the n-torus $\mathbb{T}=\mathbb{G}_{m}^{n}$ is called toric if \mathbb{T} acts on X with an open orbit.
- X is called smooth in codimension 2 if the singular locus of X has codimension ≥ 3.

TWO THEOREMS

THEOREM 1 (AKZ '19) Let X be a toric affine variety with no torus factor. If X is smooth in codimension two then there exists a finite collection of root \mathbb{G}_{a}-subgroups U_{1}, \ldots, U_{m} of $\operatorname{Aut}(X)$ such that $G=\left\langle U_{1}, \ldots, U_{m}\right\rangle$ acts highly transitively on the smooth locus $X_{\text {reg }}$.

TWO THEOREMS

THEOREM 1 (AKZ '19) Let X be a toric affine variety with no torus factor. If X is smooth in codimension two then there exists a finite collection of root \mathbb{G}_{a}-subgroups U_{1}, \ldots, U_{m} of $\operatorname{Aut}(X)$ such that $G=\left\langle U_{1}, \ldots, U_{m}\right\rangle$ acts highly transitively on the smooth locus $X_{\text {reg }}$.
THEOREM 2 (AKZ '19; ANDRIST '19) For any $n \geq 2$ one can find three \mathbb{G}_{a}-subgroups $H_{1}, H_{2}, H_{3} \subset \operatorname{Aut}\left(\mathbb{A}^{n}\right)$ such that $G=\left\langle H_{1}, H_{2}, H_{3}\right\rangle$ is highly transitive on \mathbb{A}^{n}.

TWO THEOREMS

THEOREM 1 (AKZ '19) Let X be a toric affine variety with no torus factor. If X is smooth in codimension two then there exists a finite collection of root \mathbb{G}_{a}-subgroups U_{1}, \ldots, U_{m} of $\operatorname{Aut}(X)$ such that $G=\left\langle U_{1}, \ldots, U_{m}\right\rangle$ acts highly transitively on the smooth locus $X_{\text {reg }}$.
THEOREM 2 (AKZ '19; ANDRIST '19) For any $n \geq 2$ one can find three \mathbb{G}_{a}-subgroups $H_{1}, H_{2}, H_{3} \subset \operatorname{Aut}\left(\mathbb{A}^{n}\right)$ such that $G=\left\langle H_{1}, H_{2}, H_{3}\right\rangle$ is highly transitive on \mathbb{A}^{n}.

REMARK Andrist found 3 explicit LND's on $\mathbb{A}^{n}, n \geq 2$, which generate such \mathbb{G}_{a}-subgroups H_{1}, H_{2}, H_{3}.

ALGEBRA

QUESTION (DEMAILLY) What is the growth rate of a group as in Theorems 1-2?

ALGEBRA

QUESTION (DEMAILLY) What is the growth rate of a group as in Theorems 1-2?
Before giving a partial answer, we survey on highly transitive groups and the group growth.

ALGEBRA

QUESTION (DEMAILLY) What is the growth rate of a group as in Theorems 1-2?
Before giving a partial answer, we survey on highly transitive groups and the group growth.

THEOREM (DARJI-MITCHELL '08) For any $\alpha \in \operatorname{Sym}(\mathbb{Z}) \backslash\{\mathrm{id}\}$ there exists $\beta \in \operatorname{Sym}(\mathbb{Z})$ such that the subgroup $G=\langle\alpha, \beta\rangle$ is highly transitive on \mathbb{Z}. If α has finite support, then one can take a shift $x \mapsto x+n$ for β.

MORE EXAMPLES OF HIGH TRANSITIVITY

The following countable groups are highly transitive:

- The nonabelian free group $F_{n}, n \geq 2$ (McDONOUGH '77, CAMERON '87, et al.);

The following countable groups are highly transitive:

- The nonabelian free group $F_{n}, n \geq 2$ (McDONOUGH '77, CAMERON '87, et al.);
- $F_{\infty}=\left[F_{2}, F_{2}\right] \unlhd F_{2}$;

MORE EXAMPLES OF HIGH TRANSITIVITY

The following countable groups are highly transitive:

- The nonabelian free group $F_{n}, n \geq 2$ (McDONOUGH '77, CAMERON '87, et al.);
- $F_{\infty}=\left[F_{2}, F_{2}\right] \unlhd F_{2}$;
- $\operatorname{Out}\left(F_{n}\right)=\operatorname{Aut}\left(F_{n}\right) / \operatorname{Inn}\left(F_{n}\right)($ GARION-GLASNER '13);

MORE EXAMPLES OF HIGH TRANSITIVITY

The following countable groups are highly transitive:

- The nonabelian free group $F_{n}, n \geq 2$ (McDONOUGH '77, CAMERON '87, et al.);
- $F_{\infty}=\left[F_{2}, F_{2}\right] \unlhd F_{2}$;
- $\operatorname{Out}\left(F_{n}\right)=\operatorname{Aut}\left(F_{n}\right) / \operatorname{Inn}\left(F_{n}\right)($ GARION-GLASNER '13);
- the free product $G_{1} * G_{2}$ with nontrivial G_{1} and G_{2}, except for the infinite dihedral group $\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ (GLASS-McCLEARY '91, GUNHOUS '92, HICKIN '92, FIMA-MOON '13);

MORE EXAMPLES OF HIGH TRANSITIVITY

The following countable groups are highly transitive:

- The nonabelian free group $F_{n}, n \geq 2$ (McDONOUGH '77, CAMERON '87, et al.);
- $F_{\infty}=\left[F_{2}, F_{2}\right] \unlhd F_{2}$;
- $\operatorname{Out}\left(F_{n}\right)=\operatorname{Aut}\left(F_{n}\right) / \operatorname{Inn}\left(F_{n}\right)($ GARION-GLASNER '13);
- the free product $G_{1} * G_{2}$ with nontrivial G_{1} and G_{2}, except for the infinite dihedral group $\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ (GLASS-McCLEARY '91, GUNHOUS '92, HICKIN '92, FIMA-MOON '13);
- in particular, $\operatorname{PSL}(2, \mathbb{Z})=\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 3 \mathbb{Z}$. However, it is unknown whether $\operatorname{PSL}(2, K)$ is highly transitive for a countable field K (HULL-OSIN '16);

MORE EXAMPLES OF HIGH TRANSITIVITY

The following countable groups are highly transitive:

- The nonabelian free group $F_{n}, n \geq 2$ (McDONOUGH '77, CAMERON '87, et al.);
- $F_{\infty}=\left[F_{2}, F_{2}\right] \unlhd F_{2}$;
- $\operatorname{Out}\left(F_{n}\right)=\operatorname{Aut}\left(F_{n}\right) / \operatorname{Inn}\left(F_{n}\right)($ GARION-GLASNER '13);
- the free product $G_{1} * G_{2}$ with nontrivial G_{1} and G_{2}, except for the infinite dihedral group $\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ (GLASS-McCLEARY '91, GUNHOUS '92, HICKIN '92, FIMA-MOON '13);
- in particular, $\operatorname{PSL}(2, \mathbb{Z})=\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 3 \mathbb{Z}$. However, it is unknown whether $\operatorname{PSL}(2, K)$ is highly transitive for a countable field K (HULL-OSIN '16);
- certain amalgams, HNN-extensions, and groups acting on trees (FIMA-MOON-STALDER '15).

LEMMA 1 (DIXON-MORTIMER) Let $G \subset \operatorname{Sym}(X)$, and let $1 \neq N \unlhd G$ be a nontrivial normal subgroup.
(a) If G is 2-transitive on X then N is transitive on X.
(b) If G is highly transitive on X then N is.
(c) No abelian group is highly transitive.

Proof of (a): G preserves the partition of X into the orbits of N on X. If this partition is nontrivial, G cannot be 2-transitive. (c) follows from (a).
DEFINITION A subgroup $N \subset G$ is called subnormal if there exists a series

$$
G \unrhd N_{1} \unrhd N_{2} \unrhd \ldots \unrhd N_{k}=N .
$$

COROLLARY 1 Let $N \subset G$ be a nontrivial subnormal subgroup. If G is highly transitive on X then N is.

NON-HIGHLY TRANSITIVE GROUPS

COROLLARY 2 A virtually solvable group cannot be highly transitive.

NON-HIGHLY TRANSITIVE GROUPS

COROLLARY 2 A virtually solvable group cannot be highly transitive.
Proof: G is virtually solvable implies G has a solvable normal subgroup N of finite index. This N can be obtained from abelian groups using extensions. Hence N has a nontrivial abelian subnormal subgroup A, and also G has. By Lemma 1 , if G is highly transitive then A is, in contradiction with (c) of Lemma 1.

GROUPS OF POLYNOMIAL GROWTH

DEFINITION A finitely generated group G has polynomial growth if the "volume" $V(r)$ of the ball of radius r in G centered at e_{G} (with respect to the word metric) is at most polynomial:

$$
V(r) \leq \operatorname{cst} \cdot r^{N}, \exists N \geq 0 .
$$

GROUPS OF POLYNOMIAL GROWTH

DEFINITION A finitely generated group G has polynomial growth if the "volume" $V(r)$ of the ball of radius r in G centered at e_{G} (with respect to the word metric) is at most polynomial:

$$
V(r) \leq \operatorname{cst} \cdot r^{N}, \exists N \geq 0 .
$$

Recall that $V(r)$ is the number of elements of G representable by reduced words of length at most r in the given generators. The choice of generators is irrelevant, up to a constant factor.

GROUPS OF POLYNOMIAL GROWTH

DEFINITION A finitely generated group G has polynomial growth if the "volume" $V(r)$ of the ball of radius r in G centered at e_{G} (with respect to the word metric) is at most polynomial:

$$
V(r) \leq \operatorname{cst} \cdot r^{N}, \exists N \geq 0 .
$$

Recall that $V(r)$ is the number of elements of G representable by reduced words of length at most r in the given generators. The choice of generators is irrelevant, up to a constant factor.
GROMOV'S THEOREM A finitely generated group G has polynomial growth if and only if G is virtually nilpotent.

GROUPS OF POLYNOMIAL GROWTH

DEFINITION A finitely generated group G has polynomial growth if the "volume" $V(r)$ of the ball of radius r in G centered at e_{G} (with respect to the word metric) is at most polynomial:

$$
V(r) \leq \operatorname{cst} \cdot r^{N}, \exists N \geq 0 .
$$

Recall that $V(r)$ is the number of elements of G representable by reduced words of length at most r in the given generators. The choice of generators is irrelevant, up to a constant factor.
GROMOV'S THEOREM A finitely generated group G has polynomial growth if and only if G is virtually nilpotent.
From Corollary 2 we deduce
COROLLARY 3 A finitely generated group G of polynomial growth cannot be highly transitive.

GROUPS OF EXPONENTIAL GROWTH

DEFINITION A finitely generated group G has exponential growth if

$$
V(r) \geq \operatorname{cst} e^{\gamma}, \exists \gamma \geq 1 .
$$

GROUPS OF EXPONENTIAL GROWTH

DEFINITION A finitely generated group G has exponential growth if

$$
V(r) \geq \operatorname{cst} e^{\gamma}, \exists \gamma \geq 1 .
$$

The free group $F_{k}, k \geq 2$, is of exponential growth. Any finitely generated group containing F_{2} is as well.

GROUPS OF EXPONENTIAL GROWTH

DEFINITION A finitely generated group G has exponential growth if

$$
V(r) \geq \operatorname{cst} e^{\gamma}, \exists \gamma \geq 1 .
$$

The free group $F_{k}, k \geq 2$, is of exponential growth. Any finitely generated group containing F_{2} is as well. THEOREM (MILNOR-WOLF '68) Any finitely generated virtually solvable group which is not virtually nilpotent has exponential growth.

GROUPS OF EXPONENTIAL GROWTH

DEFINITION A finitely generated group G has exponential growth if

$$
V(r) \geq \operatorname{cst} e^{\gamma}, \exists \gamma \geq 1 .
$$

The free group $F_{k}, k \geq 2$, is of exponential growth. Any finitely generated group containing F_{2} is as well. THEOREM (MILNOR-WOLF '68) Any finitely generated virtually solvable group which is not virtually nilpotent has exponential growth.
THEOREM (GRIGORCHUK '83) There exist finitely generated groups of intermediate growth, that is, whose growth is neither exponential, nor polynomial.

GROUPS OF EXPONENTIAL GROWTH

DEFINITION A finitely generated group G has exponential growth if

$$
V(r) \geq \operatorname{cst} e^{\gamma}, \exists \gamma \geq 1 .
$$

The free group $F_{k}, k \geq 2$, is of exponential growth. Any finitely generated group containing F_{2} is as well. THEOREM (MILNOR-WOLF '68) Any finitely generated virtually solvable group which is not virtually nilpotent has exponential growth.
THEOREM (GRIGORCHUK '83) There exist finitely generated groups of intermediate growth, that is, whose growth is neither exponential, nor polynomial. No finitely presented such group is known.

GROUPS OF EXPONENTIAL GROWTH

DEFINITION A finitely generated group G has exponential growth if

$$
V(r) \geq \operatorname{cst} e^{\gamma}, \exists \gamma \geq 1 .
$$

The free group $F_{k}, k \geq 2$, is of exponential growth. Any finitely generated group containing F_{2} is as well. THEOREM (MILNOR-WOLF '68) Any finitely generated virtually solvable group which is not virtually nilpotent has exponential growth.
THEOREM (GRIGORCHUK '83) There exist finitely generated groups of intermediate growth, that is, whose growth is neither exponential, nor polynomial. No finitely presented such group is known.
QUESTION: Can a highly transitive, finitely generated group be of intermediate growth?

TITS ALTERNATIVE

THEOREM (TITS ALTERNATIVE, TITS '72)
Let $H \subset G L(n, K)$ be a finitely generated (arbitrary, if $\operatorname{char}(K)=0$) linear group over a field K. Then either H is virtually solvable, or H contains a copy of F_{2}. In particular, G has either polynomial, or exponential growth.

TITS ALTERNATIVE

THEOREM (TITS ALTERNATIVE, TITS '72)

 Let $H \subset \mathrm{GL}(n, K)$ be a finitely generated (arbitrary, if $\operatorname{char}(K)=0$) linear group over a field K. Then either H is virtually solvable, or H contains a copy of F_{2}. In particular, G has either polynomial, or exponential growth.DEFINITION A group G satisfies (restricted) Tits alternative if any (finitely generated, respectively) subgroup H of G either is virtually solvable, or contains a copy of F_{2}.

TITS ALTERNATIVE

THEOREM (TITS ALTERNATIVE, TITS '72)

 Let $H \subset G L(n, K)$ be a finitely generated (arbitrary, if char $(K)=0$) linear group over a field K. Then either H is virtually solvable, or H contains a copy of F_{2}. In particular, G has either polynomial, or exponential growth.DEFINITION A group G satisfies (restricted) Tits alternative if any (finitely generated, respectively) subgroup H of G either is virtually solvable, or contains a copy of F_{2}.

COROLLARY 4 Let a group G satisfies the Tits alternative, and let a subgroup $H \subset G$ it highly transitive. Then $H \supset F_{2}$. In particular, H has exponential growth.

BACK TO GEOMETRY

THEOREM The Tits alternative holds for the following groups:

- the Gromov hyperbolic groups;

BACK TO GEOMETRY

THEOREM The Tits alternative holds for the following groups:

- the Gromov hyperbolic groups;
- $\operatorname{Out}\left(F_{n}\right)$ (BESTVINA-FEIGHN-HANDEL '00);

BACK TO GEOMETRY

THEOREM The Tits alternative holds for the following groups:

- the Gromov hyperbolic groups;
- $\operatorname{Out}\left(F_{n}\right)$ (BESTVINA-FEIGHN-HANDEL '00);
- the mapping class groups $\operatorname{Out}\left(\pi_{1}(R)\right)$ of a compact Riemann surface R (IVANOV and McCARTHY '84-'85).

THEOREM Given a projective variety V, consider the group $\operatorname{Bir}(V)$ of birational transformations of V. Then $\operatorname{Bir}(V)$ verifies the Tits alternative if either

- $\operatorname{dim}(V)=2$ (LAMY-CANTAT-URECH '01-'05-'18),

BACK TO GEOMETRY

THEOREM The Tits alternative holds for the following groups:

- the Gromov hyperbolic groups;
- $\operatorname{Out}\left(F_{n}\right)$ (BESTVINA-FEIGHN-HANDEL '00);
- the mapping class groups $\operatorname{Out}\left(\pi_{1}(R)\right)$ of a compact Riemann surface R (IVANOV and McCARTHY '84-'85).

THEOREM Given a projective variety V, consider the group $\operatorname{Bir}(V)$ of birational transformations of V. Then $\operatorname{Bir}(V)$ verifies the Tits alternative if either

- $\operatorname{dim}(V)=2$ (LAMY-CANTAT-URECH '01-'05-'18), or
- V is a hyperkähler variety (OGUISO '06).

DEMAILLY's PROBLEM

The last theorem allows to answer Demailly's question in these two cases:

COROLLARY Let V be an algebraic surface or a hyperkähler projective variety. If a subgroup
$G \subset \operatorname{Bir}(V)$ is highly transitive then G contains a copy of F_{2}, and so, has exponential growth.

DEMAILLY's PROBLEM

The last theorem allows to answer Demailly's question in these two cases:

COROLLARY Let V be an algebraic surface or a hyperkähler projective variety. If a subgroup
$G \subset \operatorname{Bir}(V)$ is highly transitive then G contains a copy of F_{2}, and so, has exponential growth.
It is unknown whether Tits' alternative holds for $\operatorname{Aut}\left(\mathbb{A}^{3}\right)$.

DEMAILLY's PROBLEM

The last theorem allows to answer Demailly's question in these two cases:

COROLLARY Let V be an algebraic surface or a hyperkähler projective variety. If a subgroup
$G \subset \operatorname{Bir}(V)$ is highly transitive then G contains a copy of F_{2}, and so, has exponential growth.
It is unknown whether Tits' alternative holds for $\operatorname{Aut}\left(\mathbb{A}^{3}\right)$.
EXAMPLE (LEWIS-PERRY-STRAUB '19) The group $G=\left\langle H_{1}, H_{2}\right\rangle$ generated by the \mathbb{G}_{a}-subgroups
$H_{1}=\{(x, y) \mapsto(x, y+\lambda x)\}, \quad H_{2}=\left\{(x, y) \mapsto\left(x+\mu y^{2}, y\right)\right\}$
is highly transitive on $\mathbb{A}^{2} \backslash\{0\}$. It is easily seen that $G \supset F_{2}$.

RECENT RESULTS

CONJECTURE Let X be an affine variety of dimension ≥ 2 defined over an algebraically closed field of characteristic zero. Consider the group

$$
G=\left\langle U_{1}, \ldots, U_{s}\right\rangle
$$

generated by \mathbb{G}_{a}-subgroups $U_{1}, \ldots U_{s}$ of $\operatorname{Aut}(X)$. Then the Tits alternative holds for G. If G is highly transitive, then G contains a free subgroup F_{2}, and so, has exponential growth.

RECENT RESULTS

CONJECTURE Let X be an affine variety of dimension ≥ 2 defined over an algebraically closed field of characteristic zero. Consider the group

$$
G=\left\langle U_{1}, \ldots, U_{s}\right\rangle
$$

generated by \mathbb{G}_{a}-subgroups $U_{1}, \ldots U_{s}$ of $\operatorname{Aut}(X)$. Then the Tits alternative holds for G. If G is highly transitive, then G contains a free subgroup F_{2}, and so, has exponential growth.

We prove this conjecture in the case of toric affine varieties.

TORIC AFFINE VARIETIES

Consider:

- M - a lattice of rank $n \geq 2$;

TORIC AFFINE VARIETIES

Consider:

- M - a lattice of rank $n \geq 2$;
- the \mathbb{Q}-vector space $M_{\mathbb{Q}}=M \otimes \mathbb{Q}$;

TORIC AFFINE VARIETIES

Consider:

- M - a lattice of rank $n \geq 2$;
- the \mathbb{Q}-vector space $M_{\mathbb{Q}}=M \otimes \mathbb{Q}$;
- the weight cone $\sigma^{\vee} \subset M_{\mathbb{Q}}$ - a rational polyhedral convex cone with a nonempty interior;

TORIC AFFINE VARIETIES

Consider:

- M - a lattice of rank $n \geq 2$;
- the \mathbb{Q}-vector space $M_{\mathbb{Q}}=M \otimes \mathbb{Q}$;
- the weight cone $\sigma^{\vee} \subset M_{\mathbb{Q}}$ - a rational polyhedral convex cone with a nonempty interior;
- a base of M making M an integer lattice of rank n;

TORIC AFFINE VARIETIES

Consider:

- M - a lattice of rank $n \geq 2$;
- the \mathbb{Q}-vector space $M_{\mathbb{Q}}=M \otimes \mathbb{Q}$;
- the weight cone $\sigma^{\vee} \subset M_{\mathbb{Q}}$ - a rational polyhedral convex cone with a nonempty interior;
- a base of M making M an integer lattice of rank n;
- for any $m=\left(m_{1}, \ldots, m_{n}\right) \in M$, the Laurent monomial $\chi^{m}=x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}$;

TORIC AFFINE VARIETIES

Consider:

- M - a lattice of rank $n \geq 2$;
- the \mathbb{Q}-vector space $M_{\mathbb{Q}}=M \otimes \mathbb{Q}$;
- the weight cone $\sigma^{\vee} \subset M_{\mathbb{Q}}$ - a rational polyhedral convex cone with a nonempty interior;
- a base of M making M an integer lattice of rank n;
- for any $m=\left(m_{1}, \ldots, m_{n}\right) \in M$, the Laurent monomial $\chi^{m}=x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}$;
- the graded affine algebra

$$
A=\bigoplus_{m \in M \cap \sigma^{\vee}} \mathbb{k} \chi^{m} \text { with } \chi^{m} \cdot \chi^{m^{\prime}}=\chi^{m+m^{\prime}} .
$$

TORIC AFFINE VARIETIES

Consider further:

- the toric affine variety $X=\operatorname{Spec} A, \operatorname{dim} X=n$;

TORIC AFFINE VARIETIES

Consider further:

- the toric affine variety $X=\operatorname{Spec} A, \operatorname{dim} X=n$;
- the action on X of the n-torus $\mathbb{T}=\mathbb{G}_{m}^{n}$ defined by the M-grading on $A=\mathcal{O}(X)$.

TORIC AFFINE VARIETIES

Consider further:

- the toric affine variety $X=\operatorname{Spec} A, \operatorname{dim} X=n$;
- the action on X of the n-torus $\mathbb{T}=\mathbb{G}_{m}^{n}$ defined by the M-grading on $A=\mathcal{O}(X)$.

REMARK

- X is normal, and any normal toric affine variety arises in this way.

DUAL CONE

Consider also the following associated objects:

- the dual lattice $N=\operatorname{Hom}(M, \mathbb{Z})$;

DUAL CONE

Consider also the following associated objects:

- the dual lattice $N=\operatorname{Hom}(M, \mathbb{Z})$;
- the dual cone

$$
\sigma \subset N_{\mathbb{Q}}, \quad \sigma=\left\{x \in N_{\mathbb{Q}} \mid\langle x, y\rangle \geq 0 \quad \forall y \in \sigma^{\vee}\right\} ;
$$

DUAL CONE

Consider also the following associated objects:

- the dual lattice $N=\operatorname{Hom}(M, \mathbb{Z})$;
- the dual cone

$$
\sigma \subset \mathbb{N}_{\mathbb{Q}}, \quad \sigma=\left\{x \in N_{\mathbb{Q}} \mid\langle x, y\rangle \geq 0 \quad \forall y \in \sigma^{\vee}\right\} ;
$$

- the set $\equiv=\left\{\rho_{1}, \ldots, \rho_{k}\right\}$ of ray generators of σ, that is, of the primitive lattice vectors on the extremal rays of σ. It is dual to the set of facets of σ^{\vee}.

DUAL CONE

Consider also the following associated objects:

- the dual lattice $N=\operatorname{Hom}(M, \mathbb{Z})$;
- the dual cone

$$
\sigma \subset N_{\mathbb{Q}}, \quad \sigma=\left\{x \in N_{\mathbb{Q}} \mid\langle x, y\rangle \geq 0 \forall y \in \sigma^{\vee}\right\} ;
$$

- the set $\equiv=\left\{\rho_{1}, \ldots, \rho_{k}\right\}$ of ray generators of σ, that is, of the primitive lattice vectors on the extremal rays of σ. It is dual to the set of facets of σ^{\vee}.

LEMMA TFAE:

- σ^{\vee} is a pointed cone, that is, σ^{\vee} contains no line;

DUAL CONE

Consider also the following associated objects:

- the dual lattice $N=\operatorname{Hom}(M, \mathbb{Z})$;
- the dual cone

$$
\sigma \subset N_{\mathbb{Q}}, \quad \sigma=\left\{x \in N_{\mathbb{Q}} \mid\langle x, y\rangle \geq 0 \forall y \in \sigma^{\vee}\right\} ;
$$

- the set $\equiv=\left\{\rho_{1}, \ldots, \rho_{k}\right\}$ of ray generators of σ, that is, of the primitive lattice vectors on the extremal rays of σ. It is dual to the set of facets of σ^{\vee}.

LEMMA TFAE:

- σ^{\vee} is a pointed cone, that is, σ^{\vee} contains no line;
- σ is of full dimension, that is, 三 contains a basis of N_{Q};

DUAL CONE

Consider also the following associated objects:

- the dual lattice $N=\operatorname{Hom}(M, \mathbb{Z})$;
- the dual cone

$$
\sigma \subset N_{\mathbb{Q}}, \quad \sigma=\left\{x \in N_{\mathbb{Q}} \mid\langle x, y\rangle \geq 0 \forall y \in \sigma^{\vee}\right\} ;
$$

- the set $\equiv=\left\{\rho_{1}, \ldots, \rho_{k}\right\}$ of ray generators of σ, that is, of the primitive lattice vectors on the extremal rays of σ. It is dual to the set of facets of σ^{\vee}.

LEMMA TFAE:

- σ^{\vee} is a pointed cone, that is, σ^{\vee} contains no line;
- σ is of full dimension, that is, 三 contains a basis of N_{Q};
- X has no toric factor, that is, X cannot be decomposed into a product $\mathbb{G}_{m} \times Y$, where Y is a toric variety of dimension $n-1$.

HOMOGENEOUS DERIVATIONS

DEFINITIONS

- A derivation $\partial \in \operatorname{Der}(A)$ is called homogeneous if ∂ respects the grading, that is, sends any graded piece to another one.

HOMOGENEOUS DERIVATIONS

DEFINITIONS

- A derivation $\partial \in \operatorname{Der}(A)$ is called homogeneous if ∂ respects the grading, that is, sends any graded piece to another one.
- Any homogeneous derivation is of the form $\partial=\lambda \partial_{\rho, e}$ where $\rho \in N, e \in M$,

$$
\partial_{\rho, e}\left(\chi^{m}\right)=\langle\rho, m\rangle \chi^{m+e} \quad \forall m \in M
$$

HOMOGENEOUS DERIVATIONS

DEFINITIONS

- A derivation $\partial \in \operatorname{Der}(A)$ is called homogeneous if ∂ respects the grading, that is, sends any graded piece to another one.
- Any homogeneous derivation is of the form $\partial=\lambda \partial_{\rho, e}$ where $\rho \in N, e \in M$,

$$
\partial_{\rho, e}\left(\chi^{m}\right)=\langle\rho, m\rangle \chi^{m+e} \quad \forall m \in M
$$

- The lattice vector $e \in M$ is called the degree of $\partial_{\rho, e}$.

COMMUTATORS OF LND's

LEMMA (LIENDO '10) A homogeneous derivation ∂ is locally nilpotent if and only if $\partial=\mathrm{cst} \cdot \partial_{\rho_{i}, \text { e }}$ for a Demazure root e with $\left\langle\rho_{i}, e\right\rangle=-1$.

COMMUTATORS OF LND's

LEMMA (LIENDO '10) A homogeneous derivation ∂ is locally nilpotent if and only if $\partial=\operatorname{cst} \cdot \partial_{\rho_{i}, \text { e }}$ for a Demazure root e with $\left\langle\rho_{i}, e\right\rangle=-1$.

LEMMA (ROMASKEVICH '14)

- Let $\partial=\partial_{\rho, e}$ and $\partial^{\prime}=\partial_{\rho^{\prime}, e^{\prime}}$. Then $\left[\partial, \partial^{\prime}\right]=\partial_{\hat{\rho}, \hat{e}}$ where

$$
\hat{e}=e+e^{\prime} \quad \text { and } \quad \hat{\rho}=\left\langle\rho, e^{\prime}\right\rangle \rho^{\prime}-\left\langle\rho^{\prime}, e\right\rangle \rho \in N .
$$

- If $\hat{\rho} \neq 0$ then $\operatorname{deg}\left(\left[\partial, \partial^{\prime}\right]\right)=e+e^{\prime} \in M$.

DEMAZURE ROOTS

DEFINITIONS

- The Demazure facet \mathcal{S}_{i} is the convex rational polyhedron in the affine hyperplane $\mathcal{H}_{i}=\left\{\left\langle\rho_{i}, e\right\rangle=-1\right\}$ defined by the inequalities

$$
\left\langle\rho_{j}, e\right\rangle \geqslant 0 \forall j \neq i .
$$

It is parallel to the th facet $\left\{\left\langle\rho_{i}, e\right\rangle=0\right\}$ of the cone σ^{\vee}.

DEMAZURE ROOTS

DEFINITIONS

- The Demazure facet \mathcal{S}_{i} is the convex rational polyhedron in the affine hyperplane $\mathcal{H}_{i}=\left\{\left\langle\rho_{i}, e\right\rangle=-1\right\}$ defined by the inequalities

$$
\left\langle\rho_{j}, e\right\rangle \geqslant 0 \forall j \neq i .
$$

It is parallel to the ith facet $\left\{\left\langle\rho_{i}, e\right\rangle=0\right\}$ of the cone σ^{\vee}.

- The Demazure roots belonging to ρ_{i} are the lattice vectors from \mathcal{S}_{i}.

DEMAZURE ROOTS

DEFINITIONS

- The Demazure facet \mathcal{S}_{i} is the convex rational polyhedron in the affine hyperplane $\mathcal{H}_{i}=\left\{\left\langle\rho_{i}, e\right\rangle=-1\right\}$ defined by the inequalities

$$
\left\langle\rho_{j}, e\right\rangle \geqslant 0 \forall j \neq i .
$$

It is parallel to the i th facet $\left\{\left\langle\rho_{i}, e\right\rangle=0\right\}$ of the cone σ^{\vee}.

- The Demazure roots belonging to ρ_{i} are the lattice vectors from \mathcal{S}_{i}.
- The \mathbb{G}_{a}-subgroup $U_{e}=\exp \left(\mathbb{k} \partial_{\rho_{i}, e}\right)$ is called the root subgroup associated with a Demazure root $e \in \mathcal{S}_{i}$. For $e, e^{\prime} \in \mathcal{S}_{i}$ the root subgroups U_{e} and $U_{e^{\prime}}$ commute.

THEOREM (Arzhantsev-Z '20) Let X be a toric affine variety with no torus factor, and let a subgroup G of Aut (X) be generated by root subgroups U_{1}, \ldots, U_{s}. Then either G is a unipotent algebraic group, or G contains a free subgroup of rank two.

THEOREM (Arzhantsev-Z '20) Let X be a toric affine variety with no torus factor, and let a subgroup G of Aut (X) be generated by root subgroups U_{1}, \ldots, U_{s}. Then either G is a unipotent algebraic group, or G contains a free subgroup of rank two. It has polynomial growth in the former case and exponential in the latter case. If it is highly transitive, then it contains F_{2}.

THEOREM (Arzhantsev-Z '20) Let X be a toric affine variety with no torus factor, and let a subgroup G of Aut (X) be generated by root subgroups U_{1}, \ldots, U_{s}. Then either G is a unipotent algebraic group, or G contains a free subgroup of rank two.
It has polynomial growth in the former case and exponential in the latter case. If it is highly transitive, then it contains F_{2}.

PROPOSITION 1 Consider the group $H=\left\langle U_{1}, U_{2}\right\rangle$ generated by the root subgroups $U_{i}=\exp \left(t \partial_{i}\right), i=1,2$, associated with two different ray generators, say, ρ_{1} and ρ_{2}, respectively. Then either H is a unipotent algebraic group, or the subgroup $\left\langle u_{1}, u_{2}\right\rangle$ is a free group of rank two for a very general pair $\left(u_{1}, u_{2}\right) \in U_{1} \times U_{2}$.

SCKETCH OF THE PROOF

With our choice of X, the Cox ring of $\mathcal{O}(X)$ is the polynomial ring in k variables. This allows to reduce to the setting where $X=\mathbb{A}^{k}$ and
$u_{1}=\left(x_{1}+s x^{c} N_{1}, x_{2}, \ldots, x_{k}\right), \quad u_{2}=\left(x_{1}, x_{2}+t x^{d} N_{2}, x_{3}, \ldots, x_{k}\right)$,
with $s, t \in \mathbb{k}$ and monomials $N_{1}, N_{2} \in \mathbb{k}\left[x_{3}, \ldots, x_{k}\right]$.

SCKETCH OF THE PROOF

With our choice of X, the Cox ring of $\mathcal{O}(X)$ is the polynomial ring in k variables. This allows to reduce to the setting where $X=\mathbb{A}^{k}$ and
$u_{1}=\left(x_{1}+s x^{c} N_{1}, x_{2}, \ldots, x_{k}\right), \quad u_{2}=\left(x_{1}, x_{2}+t x^{d} N_{2}, x_{3}, \ldots, x_{k}\right)$,
with $s, t \in \mathbb{k}$ and monomials $N_{1}, N_{2} \in \mathbb{k}\left[x_{3}, \ldots, x_{k}\right]$. By the Jung-van der Kulk Theorem,

$$
\operatorname{GL}_{2}(K)=\operatorname{Aff}_{2}(K) * c \operatorname{Jonq}(K),
$$

where

- $K=\mathbb{k}\left(s, t, x_{3}, \ldots, x_{k}\right)$;
- $\operatorname{Jonq}(K)$ is the de Jonqières triangular subgroup;
- $C=\operatorname{Aff}_{2}(K) \cap \operatorname{Jonq}(K)$.

SCKETCH OF THE PROOF

- If $c \geq 2$ and $d \geq 2$ then $H=U_{1} * U_{2}$ and $\left\langle u_{1}, u_{2}\right\rangle=F_{2}$ for any pair of nonunit elements $\left(u_{1}, u_{2}\right)$.

SCKETCH OF THE PROOF

- If $c \geq 2$ and $d \geq 2$ then $H=U_{1} * U_{2}$ and $\left\langle u_{1}, u_{2}\right\rangle=F_{2}$ for any pair of nonunit elements $\left(u_{1}, u_{2}\right)$.
- The latter remains true for general $\left(u_{1}, u_{2}\right)$ provided $c \geq 2, d \geq 1$.

SCKETCH OF THE PROOF

- If $c \geq 2$ and $d \geq 2$ then $H=U_{1} * U_{2}$ and $\left\langle u_{1}, u_{2}\right\rangle=F_{2}$ for any pair of nonunit elements $\left(u_{1}, u_{2}\right)$.
- The latter remains true for general $\left(u_{1}, u_{2}\right)$ provided $c \geq 2, d \geq 1$.
- If $c=d=1$ then for a suitable $\left(u_{1}, u_{2}\right)$, the group $\left\langle u_{1}, u_{2}\right\rangle$ surjects onto $\mathrm{SL}_{2}(\mathbb{Z})$ and so, contains a free subgroup of rank two.

SCKETCH OF THE PROOF

- If $c \geq 2$ and $d \geq 2$ then $H=U_{1} * U_{2}$ and $\left\langle u_{1}, u_{2}\right\rangle=F_{2}$ for any pair of nonunit elements $\left(u_{1}, u_{2}\right)$.
- The latter remains true for general $\left(u_{1}, u_{2}\right)$ provided $c \geq 2, d \geq 1$.
- If $c=d=1$ then for a suitable $\left(u_{1}, u_{2}\right)$, the group $\left\langle u_{1}, u_{2}\right\rangle$ surjects onto $\mathrm{SL}_{2}(\mathbb{Z})$ and so, contains a free subgroup of rank two.
- If

$$
(*) \quad \min \{c, d\}=0
$$

then H is a unipotent algebraic group.

SCKETCH OF THE PROOF

Let as before

$$
G=\left\langle U_{1}, \ldots U_{s}\right\rangle, \text { where } U_{i}=\exp \left(t \partial_{i}\right)
$$

The Lie algebra L generated by the root derivations ∂_{i}, $i=1, \ldots, s$, might contain extra root derivations.

SCKETCH OF THE PROOF

Let as before

$$
G=\left\langle U_{1}, \ldots U_{s}\right\rangle, \text { where } U_{i}=\exp \left(t \partial_{i}\right)
$$

The Lie algebra L generated by the root derivations ∂_{i}, $i=1, \ldots, s$, might contain extra root derivations. Let R_{i} be the set of Demazure roots $e_{i j} \in S_{i}$ of X such that $\partial_{\rho_{i}, e_{i j}} \in L, j=1, \ldots, \#\left(R_{i}\right)$.

SCKETCH OF THE PROOF

Let as before

$$
G=\left\langle U_{1}, \ldots U_{s}\right\rangle, \text { where } U_{i}=\exp \left(t \partial_{i}\right)
$$

The Lie algebra L generated by the root derivations ∂_{i}, $i=1, \ldots, s$, might contain extra root derivations. Let R_{i} be the set of Demazure roots $e_{i j} \in S_{i}$ of X such that $\partial_{\rho_{i}, e_{i j}} \in L, j=1, \ldots, \#\left(R_{i}\right)$. Let $R=\bigcup_{i=1}^{r} R_{i}$.

PROPOSITION 2 Suppose (*) holds for any $e_{i} \in R_{i}, e_{j} \in R_{j}, i \neq j$, that is,

$$
\min \left\{\left\langle\rho_{i}, e_{j}\right\rangle,\left\langle\rho_{j}, e_{i}\right\rangle\right\}=0
$$

Then G is a unipotent algebraic group.

SCKETCH OF THE PROOF

DEFINITION A finite sequence of root derivations

$$
\mathcal{D}=\left(D_{1}, \ldots, D_{t}, D_{t+1}\right) \text { where } D_{i}=\partial_{\rho_{j(i)}, e_{j(i), i}} \in L_{j(i)}
$$

forms a cycle if $D_{t+1}=D_{1}$ and

$$
\left\langle\rho_{j(i+1)}, e_{j(i), i}\right\rangle>0 \forall i=1, \ldots, t
$$

If this inequality holds and $\rho_{j(t+1)}=\rho_{j(1)}$ but possibly $D_{t+1} \neq D_{1}$, we say that \mathcal{D} is a pseudo-cycle.

SCKETCH OF THE PROOF

DEFINITION A finite sequence of root derivations

$$
\mathcal{D}=\left(D_{1}, \ldots, D_{t}, D_{t+1}\right) \text { where } D_{i}=\partial_{\rho_{j(i)}, e_{j(i), i}} \in L_{j(i)}
$$

forms a cycle if $D_{t+1}=D_{1}$ and

$$
\left\langle\rho_{j(i+1)}, e_{j(i), i}\right\rangle>0 \forall i=1, \ldots, t
$$

If this inequality holds and $\rho_{j(t+1)}=\rho_{j(1)}$ but possibly $D_{t+1} \neq D_{1}$, we say that \mathcal{D} is a pseudo-cycle.

LEMMA TFAE:

- L contains no pseudo-cycle;
- L contains no cycle;
- L contains no 2-cycle;
- $(*)$ holds $\forall e_{i} \in R_{i}, e_{j} \in R_{j}, i \neq j$.

SCKETCH OF THE PROOF

Under the assumption that L contains no cycle, Proposition 2 is proven by Arzhantsev, Liendo, and Stasyuk, arXiv 2019. Using the above lemma, we rewrite their proof as follows.

SCKETCH OF THE PROOF

Under the assumption that L contains no cycle, Proposition 2 is proven by Arzhantsev, Liendo, and Stasyuk, arXiv 2019. Using the above lemma, we rewrite their proof as follows.

Suppose (*) holds. Consider the abelian Lie subalgebras of L,

$$
L_{i}=\left\langle\partial_{\rho_{i}, e} \mid e \in R_{i}\right\rangle, \quad i=1, \ldots, k .
$$

SCKETCH OF THE PROOF

Under the assumption that L contains no cycle, Proposition 2 is proven by Arzhantsev, Liendo, and Stasyuk, arXiv 2019. Using the above lemma, we rewrite their proof as follows.

Suppose (*) holds. Consider the abelian Lie subalgebras of L,

$$
L_{i}=\left\langle\partial_{\rho_{i}, e} \mid e \in R_{i}\right\rangle, \quad i=1, \ldots, k .
$$

Due to (*), for any $i \neq j$ there is an alternative:

- either $\left\langle\rho_{i}, e_{j}\right\rangle=0=\left\langle\rho_{j}, e_{i}\right\rangle \forall e_{i} \in R_{i}, \forall e_{j} \in R_{j}$,
- or, up to a transposition, $\exists e_{i} \in R_{i}:\left\langle\rho_{j}, e_{i}\right\rangle>0$, and so, $\left\langle\rho_{i}, e_{j}\right\rangle=0 \forall e_{j} \in R_{j}$.

SCKETCH OF THE PROOF

In the first case $\left[L_{i}, L_{j}\right]=0$, and in the second
$0 \neq\left[L_{i}, L_{j}\right] \subset L_{i}$. Anyway, we have $L=\bigoplus_{i=1}^{r} L_{i}$ and

$$
\operatorname{dim}(L)=\sum_{i=1}^{r} \operatorname{dim}\left(L_{i}\right)=\sum_{i=1}^{r} \operatorname{card}\left(R_{i}\right)=\operatorname{card}(R) .
$$

SCKETCH OF THE PROOF

In the first case $\left[L_{i}, L_{j}\right]=0$, and in the second $0 \neq\left[L_{i}, L_{j}\right] \subset L_{i}$. Anyway, we have $L=\bigoplus_{i=1}^{r} L_{i}$ and

$$
\operatorname{dim}(L)=\sum_{i=1}^{r} \operatorname{dim}\left(L_{i}\right)=\sum_{i=1}^{r} \operatorname{card}\left(R_{i}\right)=\operatorname{card}(R)
$$

Let Γ_{k} be the directed graph on the vertices L_{1}, \ldots, L_{k} with edges $\left[L_{j}, L_{i}\right]$ oriented as follows:

$$
\left[L_{j} \rightarrow L_{i}\right] \text { iff } 0 \neq\left[L_{i}, L_{j}\right] \subset L_{i}
$$

If $\left[L_{i}, L_{j}\right]=0$, there is no edge $\left[L_{j}, L_{i}\right]$ in Γ_{k}.

SCKETCH OF THE PROOF

In the first case $\left[L_{i}, L_{j}\right]=0$, and in the second
$0 \neq\left[L_{i}, L_{j}\right] \subset L_{i}$. Anyway, we have $L=\bigoplus_{i=1}^{r} L_{i}$ and

$$
\operatorname{dim}(L)=\sum_{i=1}^{r} \operatorname{dim}\left(L_{i}\right)=\sum_{i=1}^{r} \operatorname{card}\left(R_{i}\right)=\operatorname{card}(R)
$$

Let Γ_{k} be the directed graph on the vertices L_{1}, \ldots, L_{k} with edges $\left[L_{j}, L_{i}\right]$ oriented as follows:

$$
\left[L_{j} \rightarrow L_{i}\right] \text { iff } 0 \neq\left[L_{i}, L_{j}\right] \subset L_{i}
$$

If $\left[L_{i}, L_{j}\right]=0$, there is no edge $\left[L_{j}, L_{i}\right]$ in Γ_{k}.
Due to Lemma, L contains no pseudo-cycle. This means that Γ_{k} is acyclic, that is, has no oriented cycle. Then any connected component of Γ_{k} has a sink. We may assume L_{1} to be a sink.

SCKETCH OF THE PROOF

Deleting this sink L_{1} and all the incident edges yields again an acyclic directed graph Γ_{k-1}, which in turn has a sink, which we take for L_{2}.

SCKETCH OF THE PROOF

Deleting this sink L_{1} and all the incident edges yields again an acyclic directed graph Γ_{k-1}, which in turn has a sink, which we take for L_{2}. Finally, we renumerate the vertices in such a way that
$\left[L_{i}, L_{1}\right] \subset L_{1}, \quad i=2, \ldots, r$,
$\left[L_{i}, L_{2}\right] \subset L_{2}, \quad i=3, \ldots, r$,
$\left[L_{r}, L_{r-1}\right] \subset L_{r-1}$.

SCKETCH OF THE PROOF

Deleting this sink L_{1} and all the incident edges yields again an acyclic directed graph Γ_{k-1}, which in turn has a sink, which we take for L_{2}. Finally, we renumerate the vertices in such a way that
$\left[L_{i}, L_{1}\right] \subset L_{1}, \quad i=2, \ldots, r$,
$\left[L_{i}, L_{2}\right] \subset L_{2}, \quad i=3, \ldots, r$,
$\left[L_{r}, L_{r-1}\right] \subset L_{r-1}$.
We show that

- $\operatorname{dim}\left(L_{i}\right)<+\infty \forall i=1, \ldots, k$;
- for $N \gg 1, \operatorname{ad}\left(L_{j}\right)^{N}\left(L_{i}\right)=0 \forall j \geq i$, and so,
- $\operatorname{ad}(L)^{N k}(L)=0$.

It follows that L is nilpotent and finite-dimensional.

