Universal representatives of the homology of algebraic hypersurfaces

> Conférence ALKAGE 9-13 march 2020



Damien Gayet (Institut Fourier, Grenoble)

Let $P \in \mathbb{C}_d^{hom}[Z_0, Z_1, Z_2].$

Let $P \in \mathbb{C}_d^{hom}[Z_0, Z_1, Z_2]$. Then

 $Z(P) = \{P = 0\} \subset \mathbb{C}P^2$

Let $P \in \mathbb{C}_d^{hom}[Z_0, Z_1, Z_2]$. Then

$$Z(P) = \{P = 0\} \subset \mathbb{C}P^2$$

 is generically an orientable compact smooth Riemann surface;

Let $P \in \mathbb{C}_d^{hom}[Z_0, Z_1, Z_2]$. Then

$$Z(P) = \{P = 0\} \subset \mathbb{C}P^2$$

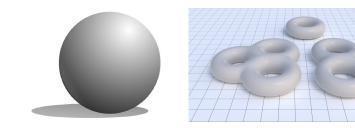
- is generically an orientable compact smooth Riemann surface;
- ▶ connected;

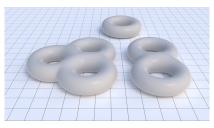
Let $P \in \mathbb{C}_d^{hom}[Z_0, Z_1, Z_2]$. Then

$$Z(P) = \{P = 0\} \subset \mathbb{C}P^2$$

- is generically an orientable compact smooth Riemann surface;
- ▶ connected;
- with a constant genus $\frac{1}{2}(d-1)(d-2)$.

$$\blacktriangleright$$
 $d = 1$ or $d = 2$: sphere





$$\blacktriangleright$$
 $d = 4$: genus $g = 3$

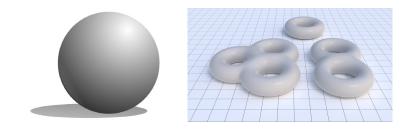


$$\blacktriangleright$$
 $d = 1$ or $d = 2$: sphere

$$\blacktriangleright d = 3$$
 : torus

$$\blacktriangleright$$
 $d = 4$: genus $g = 3$

 $\blacktriangleright \dim \mathbb{C}_d^{hom}[Z_0, Z_1, Z_2] \sim_d g.$



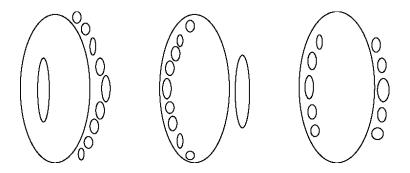
$$\blacktriangleright d = 1 \text{ or } d = 2 : \text{sphere}$$

 \blacktriangleright d = 3 : torus

$$\blacktriangleright d = 4 : \text{genus } g = 3$$

- $\blacktriangleright \dim \mathbb{C}_d^{hom}[Z_0, Z_1, Z_2] \sim_d g.$
- ▶ Same for the moduli space of projective curves

Very different in the real case : various number of components...



... and various possible configurations : 16th Hilbert problem (here the maximal degree 6 possible curves)

What about the geometry if Z(P) is equipped with the restriction of the ambient metric g_{FS} ?

What about the geometry if Z(P) is equipped with the restriction of the ambient metric g_{FS} ?

• W. Wirtinger theorem : $\forall P, \operatorname{Vol}(Z(P)) = d$.

What about the geometry if Z(P) is equipped with the restriction of the ambient metric g_{FS} ?

• W. Wirtinger theorem : $\forall P, \operatorname{Vol}(Z(P)) = d$.

• However Z can have very different shapes :

What about the geometry if Z(P) is equipped with the restriction of the ambient metric g_{FS} ?

▶ W. Wirtinger theorem : ∀P, Vol(Z(P)) = d.
▶ However Z can have very different shapes :

if P is close to Z^d₀, Z is concentrated near a round sphere,

What about the geometry if Z(P) is equipped with the restriction of the ambient metric g_{FS} ?

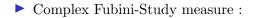
• W. Wirtinger theorem : $\forall P, \operatorname{Vol}(Z(P)) = d$.

 \blacktriangleright However Z can have very different shapes :

- 1. if P is close to Z_0^d , Z is concentrated near a round sphere,
- 2. if P is of high degree d and close to the product of equidistributed d lines, then Z is equidistributed.

If P is taken at random, what can be said more?

Theorem (B. Shiffman-S. Zelditch 1998) Almost surely, a sequence of increasing degree random complex curves gets equidistributed in $\mathbb{C}P^2$.



Complex Fubini-Study measure :

$$P = \sum_{i_0+i_1+i_2=d} a_{i_0i_1i_2} \frac{Z_0^{i_0} Z_1^{i_1} Z_2^{i_2}}{\sqrt{i_0! i_1! i_2!}},$$

where $a_{i_0i_1i_2}$ are i.i.d. normal variables $\sim N_{\mathbb{C}}(0,1)$.

► Complex Fubini-Study measure :

$$P = \sum_{i_0+i_1+i_2=d} a_{i_0i_1i_2} \frac{Z_0^{i_0} Z_1^{i_1} Z_2^{i_2}}{\sqrt{i_0! i_1! i_2!}},$$

where a_{i₀i₁i₂} are i.i.d. normal variables ~ N_C(0, 1).
This is the Gaussian measure associated to the Fubini-Study L²-scalar product on the space of polynomials :

$$\langle P, Q \rangle_{FS} = \int_{\mathbb{C}P^n} \frac{P(Z)\overline{Q(Z)}}{\|Z\|^{2d}} dvol_{FS}.$$

Complex Fubini-Study measure :

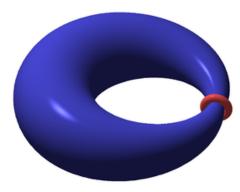
$$P = \sum_{i_0+i_1+i_2=d} a_{i_0i_1i_2} \frac{Z_0^{i_0} Z_1^{i_1} Z_2^{i_2}}{\sqrt{i_0! i_1! i_2!}},$$

where $a_{i_0i_1i_2}$ are i.i.d. normal variables $\sim N_{\mathbb{C}}(0,1)$.

▶ This is the Gaussian measure associated to the Fubini-Study *L*²-scalar product on the space of polynomials :

$$\langle P, Q \rangle_{FS} = \int_{\mathbb{C}P^n} \frac{P(Z)\overline{Q(Z)}}{\|Z\|^{2d}} dvol_{FS}.$$

 Generalizes for random sections of high powers of an ample line bundle over a compact Kähler manifold.



What about the length of the **systole** of the random complex curve : its shortest non-contractible real loop ?

Let

$$\mathcal{M}_g = \{ \text{genus } g \text{ compact smooth surface} \\ \text{with a metric of curvature } -1 \}.$$

Let

$$\mathcal{M}_g = \{ \text{genus } g \text{ compact smooth surface} \\ \text{with a metric of curvature } -1 \}.$$

 \blacktriangleright No bound for the diameters, even at fixed g.

 Let

$$\mathcal{M}_g = \{ \text{genus } g \text{ compact smooth surface} \\ \text{with a metric of curvature } -1 \}.$$

No bound for the diameters, even at fixed g.
dim_ℂ M_q = 3g - 3

Let

$$\mathcal{M}_g = \{ \text{genus } g \text{ compact smooth surface} \\ \text{with a metric of curvature } -1 \}.$$

• No bound for the diameters, even at fixed g.

$$\blacktriangleright \dim_{\mathbb{C}} \mathcal{M}_g = 3g - 3$$

• There exists a natural probability measure Prob_{WP} on \mathcal{M}_g .

Let

$$\mathcal{M}_g = \{ \text{genus } g \text{ compact smooth surface} \\ \text{with a metric of curvature } -1 \}.$$

▶ No bound for the diameters, even at fixed g.

$$\blacktriangleright \dim_{\mathbb{C}} \mathcal{M}_g = 3g - 3$$

• There exists a natural probability measure Prob_{WP} on \mathcal{M}_g .

Theorem (M. Mirzakhani 2013). There exist 0 < c < 1 such that for all $g \ge 2$,

$$c \leq \operatorname{Prob}_{WP} \left[\operatorname{Length} of the systele \leq 1 \right] \leq 1 - c.$$

Random projective curves

Theorem 1. There exists c > 0,

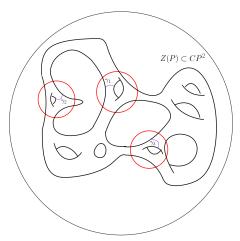
$$\forall d \gg 1, \ c \leq \operatorname{Prob}_{FS} \left[\operatorname{Length}_{\sqrt{d}g_{FS}} \text{ of the systole } \leq 1 \right].$$

Recall that dim $H_1(Z) = 2g \sim d^2$.

Recall that dim $H_1(Z) = 2g \sim d^2$.

Theorem 1' There exists c > 0,

$$\begin{aligned} \forall d \gg 1, \ c \leq \operatorname{Prob}_{FS} \Big[\exists \ \gamma_1, \cdots, \gamma_{cd^2}, \forall i, \operatorname{Length}(\gamma_i) \leq 1 \\ & \text{and} \ [\gamma_1], \cdots, [\gamma_{cd^2}] \\ & \text{is an independent family of} \ H_1\big(Z(P)\big) \Big]. \end{aligned}$$



For every d, there exists a basis of $H_1(Z)$ such that a uniform proportion of its elements are represented by small loops with uniform probability Very useless deterministic Corollary. There exists c > 0, such that for any genus g surface,

 $\dim H_1 \ge cg.$

Very useless deterministic Corollary. There exists c > 0, such that for any genus g surface,

 $\dim H_1 \ge cg.$

In higher dimensions,

Very useless deterministic Corollary. There exists c > 0, such that for any genus g surface,

 $\dim H_1 \ge cg.$

In higher dimensions,

complex curves become complex hypersurfaces;

Very useless deterministic Corollary. There exists c > 0, such that for any genus g surface,

 $\dim H_1 \ge cg.$

In higher dimensions,

- complex curves become complex hypersurfaces;
- ▶ non-contractible loops become Lagrangian submanifolds;

Very useless deterministic Corollary. There exists c > 0, such that for any genus g surface,

 $\dim H_1 \ge cg.$

In higher dimensions,

- complex curves become complex hypersurfaces;
- ▶ non-contractible loops become Lagrangian submanifolds;
- ▶ the useless deterministic bound becomes an non-trivial estimate for homological (Lagrangian) representatives.

Let $P \in \mathbb{C}_d^{hom}[Z_0, Z_1, \cdots, Z_n].$

Let $P \in \mathbb{C}_d^{hom}[Z_0, Z_1, \cdots, Z_n]$. Then $Z(P) = \{P = 0\} \subset \mathbb{C}P^n$

Let
$$P \in \mathbb{C}_d^{hom}[Z_0, Z_1, \cdots, Z_n]$$
. Then
 $Z(P) = \{P = 0\} \subset \mathbb{C}P^n$

▶ is generically a smooth complex hypersurface, or 2n - 2 real submanifold,

Let
$$P \in \mathbb{C}_d^{hom}[Z_0, Z_1, \cdots, Z_n]$$
. Then
$$Z(P) = \{P = 0\} \subset \mathbb{C}P^n$$

- ▶ is generically a smooth complex hypersurface, or 2n 2 real submanifold,
- ▶ with a constant diffeomorphism type.

$$\forall k < n-1, \ H_k(Z(P)) = H_k(\mathbb{C}P^n).$$

$$\forall k < n-1, \ H_k(Z(P)) = H_k(\mathbb{C}P^n).$$

Same for homotopy groups. In particular, Z is connected for $n \ge 2$ and simply connected for $n \ge 3$.

$$\forall k < n-1, \ H_k(Z(P)) = H_k(\mathbb{C}P^n).$$

Same for homotopy groups. In particular, Z is connected for $n \ge 2$ and simply connected for $n \ge 3$.

▶ Chern computation

$$\dim H_{n-1}(Z) \sim d^n.$$

$$\forall k < n-1, \ H_k(Z(P)) = H_k(\mathbb{C}P^n).$$

Same for homotopy groups. In particular, Z is connected for $n \ge 2$ and simply connected for $n \ge 3$.

▶ Chern computation

$$\dim H_{n-1}(Z) \sim d^n.$$

▶ ⇒ For n = 2, $Z \subset \mathbb{C}P^2$ is a connected complex curve and its interesting topology lies in $H_1(Z)$, whose dimension grows like d^2 .

$$\forall k < n-1, \ H_k(Z(P)) = H_k(\mathbb{C}P^n).$$

Same for homotopy groups. In particular, Z is connected for $n \ge 2$ and simply connected for $n \ge 3$.

▶ Chern computation

$$\dim H_{n-1}(Z) \sim d^n.$$

- ▶ ⇒ For n = 2, $Z \subset \mathbb{C}P^2$ is a connected complex curve and its interesting topology lies in $H_1(Z)$, whose dimension grows like d^2 .
- ▶ ⇒ For n = 3, $Z \subset \mathbb{C}P^3$ is a connected and simply connected complex surface and its interesting homology lies in $H_2(Z)$, that is for real surfaces inside it.

 $\operatorname{sys}_k(M) := 2 \inf \left\{ \operatorname{diam} \mathcal{L} \mid [\mathcal{L}] \neq 0 \text{ in } H_k(M) \right\}$

be the Berger k-systole.

 $\operatorname{sys}_k(M) := 2 \inf \left\{ \operatorname{diam} \mathcal{L} \mid [\mathcal{L}] \neq 0 \text{ in } H_k(M) \right\}$

be the Berger k-systole. Facts :

 $\operatorname{sys}_k(M) := 2 \inf \left\{ \operatorname{diam} \mathcal{L} \mid [\mathcal{L}] \neq 0 \text{ in } H_k(M) \right\}$

be the Berger k-systole. Facts :

1. Length(systole(M)) \leq sys₁(M).

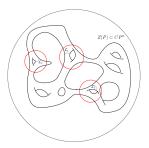
 $\operatorname{sys}_k(M) := 2 \inf \left\{ \operatorname{diam} \mathcal{L} \mid [\mathcal{L}] \neq 0 \text{ in } H_k(M) \right\}$

be the Berger k-systole. Facts :

- 1. Length(systole(M)) \leq sys₁(M).
- 2. If $H_k(M) \neq 0$, then $sys_k(M) > 0$.

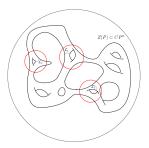
Theorem 2 Assume that n is odd. Then,

$$\exists c>0, \ \forall d\gg 1, \ c\leq \mathrm{Prob}\Big[\mathrm{sys}_{n-1}(Z(P))\leq 1.\Big]$$



Theorem 2' Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ c \leq \operatorname{Prob} \Big[\exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \text{ pairwise disjoint}, \\ \forall i, \mathcal{L}_i \sim_{diff} \mathcal{L}, \ \operatorname{diam} \mathcal{L}_i \leq 1 \\ \text{and } [\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}] \text{ form an independent family of } H_{n-1}(Z(P)) \Big].$$



Theorem 2' Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ c \leq \operatorname{Prob} \Big[\exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \text{ pairwise disjoint}, \\ \forall i, \mathcal{L}_i \sim_{diff} \mathcal{L}, \ \operatorname{diam} \mathcal{L}_i \leq 1 \\ \text{and } [\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}] \text{ form an independent family of } H_{n-1}(Z(P)) \Big].$$

Recall : dim $H_*(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n$.

Deterministic corollary Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^d_{hom}, \ \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

- ▶ pairwise disjoint,
- diffeomorphic to \mathcal{L} ,
- ▶ $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$.

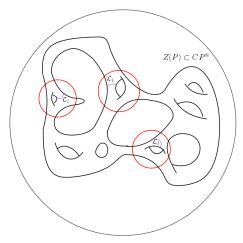
Deterministic corollary Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^d_{hom}, \ \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

▶ pairwise disjoint,

- diffeomorphic to \mathcal{L} ,
- ▶ $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$.

Universal phenomenon : Same holds for zeros of sections of high powers of an ample line bundle over a compact Kähler manifold.



For any real hypersurface \mathcal{L} with non-vanishing Euler characteristic and every large enough degree, there exists a basis of $H_{n-1}(Z)$ such that a uniform proportion of its elements are represented by submanifolds diffeomorphic to \mathcal{L} .

Recall that $\omega_{FS} = g_{FS}(\cdot, J \cdot)$, where J is the complex structure and g_{FS} .

Recall that $\omega_{FS} = g_{FS}(\cdot, J \cdot)$, where J is the complex structure and g_{FS} .

Facts :

• $(Z(P), \omega_{FS|Z(P)})$ is a symplectic manifold.

Recall that $\omega_{FS} = g_{FS}(\cdot, J \cdot)$, where J is the complex structure and g_{FS} .

Facts :

•
$$(Z(P), \omega_{FS|Z(P)})$$
 is a symplectic manifold.

▶ If P, Q have the same degree,

$$\left(Z(P), \omega_{FS|Z(P)}\right) \sim_{sympl} \left(Z(Q), \omega_{FS|Z(Q)}\right).$$

Recall that $\omega_{FS} = g_{FS}(\cdot, J \cdot)$, where J is the complex structure and g_{FS} .

Facts :

• $(Z(P), \omega_{FS|Z(P)})$ is a symplectic manifold.

• If P, Q have the same degree,

$$(Z(P), \omega_{FS|Z(P)}) \sim_{sympl} (Z(Q), \omega_{FS|Z(Q)}).$$

Hence, if we prove that a property of symplectic nature is true with positive probability, then it is true for any hypersurface.

•
$$(\mathbb{R}^{2n}, \omega_0)$$
 with $\omega_0 := \sum_{i=1}^n dx_i \wedge dy_i$.

- $(\mathbb{R}^{2n}, \omega_0)$ with $\omega_0 := \sum_{i=1}^n dx_i \wedge dy_i$.
- ► Darboux theorem : locally any symplectic manifold is symplectomorphic to $(\mathbb{R}^{2n}, \omega_0)$.

- $(\mathbb{R}^{2n}, \omega_0)$ with $\omega_0 := \sum_{i=1}^n dx_i \wedge dy_i$.
- ► Darboux theorem : locally any symplectic manifold is symplectomorphic to $(\mathbb{R}^{2n}, \omega_0)$.
- ▶ A real Riemannian surface (M, g) is symplectic when equipped with its area form dVol_g.

- $(\mathbb{R}^{2n}, \omega_0)$ with $\omega_0 := \sum_{i=1}^n dx_i \wedge dy_i$.
- ► Darboux theorem : locally any symplectic manifold is symplectomorphic to $(\mathbb{R}^{2n}, \omega_0)$.
- A real Riemannian surface (M, g) is symplectic when equipped with its area form $d\operatorname{Vol}_g$.
- ▶ $(\mathbb{C}P^n, \omega_{FS})$ is symplectic.

- $(\mathbb{R}^{2n}, \omega_0)$ with $\omega_0 := \sum_{i=1}^n dx_i \wedge dy_i$.
- ► Darboux theorem : locally any symplectic manifold is symplectomorphic to $(\mathbb{R}^{2n}, \omega_0)$.
- A real Riemannian surface (M, g) is symplectic when equipped with its area form $d\operatorname{Vol}_g$.
- $(\mathbb{C}P^n, \omega_{FS})$ is symplectic.
- ► Any complex hypersurface $Z(P) \subset \mathbb{C}P^n$ is symplectic for the restriction of ω_{FS} .

- $(\mathbb{R}^{2n}, \omega_0)$ with $\omega_0 := \sum_{i=1}^n dx_i \wedge dy_i$.
- ► Darboux theorem : locally any symplectic manifold is symplectomorphic to $(\mathbb{R}^{2n}, \omega_0)$.
- A real Riemannian surface (M, g) is symplectic when equipped with its area form $d\operatorname{Vol}_g$.
- $(\mathbb{C}P^n, \omega_{FS})$ is symplectic.
- ► Any complex hypersurface $Z(P) \subset \mathbb{C}P^n$ is symplectic for the restriction of ω_{FS} .
- ▶ The cotangent bundle T^*M of a manifold is naturally symplectic.

A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real *n*-submanifold such that $\omega_{|T\mathcal{L}} = 0$.

A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real *n*-submanifold such that $\omega_{|T\mathcal{L}} = 0$.

▶ Any real curve of a real surface is Lagrangian.

A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real *n*-submanifold such that $\omega_{|T\mathcal{L}} = 0$.

- ▶ Any real curve of a real surface is Lagrangian.
- Easy : the only orientable compact Lagrangian in (\mathbb{C}^2, ω_0) is the 2-torus.

A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real *n*-submanifold such that $\omega_{|T\mathcal{L}} = 0$.

- ▶ Any real curve of a real surface is Lagrangian.
- Easy : the only orientable compact Lagrangian in (\mathbb{C}^2, ω_0) is the 2-torus.
- ▶ Very hard : there is no Lagrangian sphere in C³ (Gromov 1985);

Lagrangians

A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real *n*-submanifold such that $\omega_{|T\mathcal{L}} = 0$.

- ▶ Any real curve of a real surface is Lagrangian.
- Easy : the only orientable compact Lagrangian in (\mathbb{C}^2, ω_0) is the 2-torus.
- ▶ Very hard : there is no Lagrangian sphere in C³ (Gromov 1985);
- Very easy to deform a Lagrangian : locally as much as the differentials of real functions over it.

Lagrangians

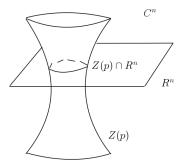
A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real *n*-submanifold such that $\omega_{|T\mathcal{L}} = 0$.

- ▶ Any real curve of a real surface is Lagrangian.
- Easy : the only orientable compact Lagrangian in (\mathbb{C}^2, ω_0) is the 2-torus.
- ▶ Very hard : there is no Lagrangian sphere in C³ (Gromov 1985);
- Very easy to deform a Lagrangian : locally as much as the differentials of real functions over it.
- ▶ The graph of a symplectomorphism is Lagrangian;

Lagrangians

A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real *n*-submanifold such that $\omega_{|T\mathcal{L}} = 0$.

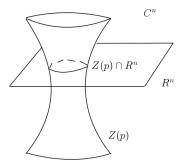
- ▶ Any real curve of a real surface is Lagrangian.
- Easy : the only orientable compact Lagrangian in (\mathbb{C}^2, ω_0) is the 2-torus.
- ▶ Very hard : there is no Lagrangian sphere in C³ (Gromov 1985);
- Very easy to deform a Lagrangian : locally as much as the differentials of real functions over it.
- ▶ The graph of a symplectomorphism is Lagrangian ;
- Motto : Lagrangians are the fundamental bricks of symplectic manifolds and their invariants (in particular with Floer homology).



• If
$$p \in \mathbb{R}[z_1, \cdots, z_n]$$
 then

$$Z(p) \cap \mathbb{R}^n$$

is Lagrangian in $(Z(p), \omega_{0|Z(p)})$.



is Lagrangian in $(Z(P), \omega_{FS|Z(P)})$.

25/53

Recall that for a degree d polynomial P,

 $\dim H_*(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n.$

Recall that for a degree d polynomial P,

 $\dim H_*(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n.$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be *any* compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^d_{hom}, \ \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

Recall that for a degree d polynomial P,

 $\dim H_*(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n.$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be *any* compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^d_{hom}, \ \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

▶ pairwise disjoint,

Recall that for a degree d polynomial P,

 $\dim H_*(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n.$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be *any* compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^d_{hom}, \ \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

▶ pairwise disjoint,

• diffeomorphic to \mathcal{L} ,

Recall that for a degree d polynomial P,

 $\dim H_*(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n.$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be *any* compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^d_{hom}, \ \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

▶ pairwise disjoint,

- diffeomorphic to \mathcal{L} ,
- ▶ $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$,

Recall that for a degree d polynomial P,

 $\dim H_*(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n.$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be *any* compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

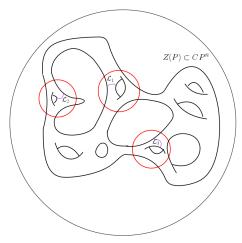
$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^d_{hom}, \ \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

▶ pairwise disjoint,

• diffeomorphic to \mathcal{L} ,

▶ $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$,

• Lagrangian submanifolds of $(Z(P), \omega_{FS|Z(P)})$.



For any real hypersurface \mathcal{L} with non-vanishing Euler characteristic and every large enough degree, there exists a basis of $H_{n-1}(Z)$ such that a uniform proportion of its elements are represented by Lagrangian submanifolds diffeomorphic to \mathcal{L} . From Picard-Lefschetz theory : **Theorem (S. Chmutov 1982).** There exists $\sim \frac{d^n}{\sqrt{d}}$ disjoint Lagrangian spheres in Z(P). From Picard-Lefschetz theory : **Theorem (S. Chmutov 1982).** There exists $\sim \frac{d^n}{\sqrt{d}}$ disjoint Lagrangian spheres in Z(P).

From tropical arguments :

Theorem (G. Mikhalkin 2004). There exists cd^n disjoint Lagrangian spheres and cd^n Lagrangian tori, whose classes in $H_{n-1}(Z(P))$ are independent, with c explicit and natural.

From random real algebraic geometry : **Theorem (with J.-Y. Welschinger 2014).** Let $\mathcal{L} \subset \mathbb{R}^n$ as before. Then there exists (an ugly but explicit and universal) c > 0, such that for $d \gg 1$,

 $c < \operatorname{Prob}_{FS,\mathbb{R}} [\exists \text{ at least } c\sqrt{d}^n \text{ components of } Z(P) \cap \mathbb{R}P^n$ diffeomorphic to $\mathcal{L}].$ From random real algebraic geometry : **Theorem (with J.-Y. Welschinger 2014).** Let $\mathcal{L} \subset \mathbb{R}^n$ as before. Then there exists (an ugly but explicit and universal) c > 0, such that for $d \gg 1$,

 $c < \operatorname{Prob}_{FS,\mathbb{R}}[\exists \text{ at least } c\sqrt{d}^n \text{ components of } Z(P) \cap \mathbb{R}P^n$ diffeomorphic to $\mathcal{L}].$

Corollary. At least $c\sqrt{d}^n$ disjoint Lagrangians diffeomorphic to \mathcal{L} in any Z(P).

Proof of Theorem 1 (systoles)

Theorem 1. There exists c > 0,

$$\forall d \gg 1, \ c \leq \operatorname{Prob}_{FS} \left[\operatorname{Length}_{\sqrt{d}q_{FS}} \text{ of the systole } \leq 1 \right].$$

Theorem 1" There exists c > 0,

$$\forall x \in \mathbb{C}P^n, \forall d \gg 1, \ c \leq \operatorname{Prob}_{FS} \left[\exists \ \gamma \subset Z(P) \cap B(x, \frac{1}{\sqrt{d}}) \right.$$

Length(γ) $\leq \frac{1}{\sqrt{d}},$
 $\gamma \text{ non contractible} \right].$

Pick a generic $Q \in \mathbb{R}^3_{hom}[Z_0, Z_1, Z_2]$.

Pick a generic $Q \in \mathbb{R}^3_{hom}[Z_0, Z_1, Z_2]$. Then

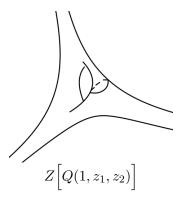
 $Z(Q)\sim \mathbb{T}^2\subset \mathbb{C}P^2.$

Pick a generic $Q \in \mathbb{R}^3_{hom}[Z_0, Z_1, Z_2]$. Then $Z(Q) \sim \mathbb{T}^2 \subset \mathbb{C}P^2$.

By Bézout theorem $Z(Q) \cap Z(Z_0) = \{3 \text{ points}\},\$

Pick a generic $Q \in \mathbb{R}^3_{hom}[Z_0, Z_1, Z_2]$. Then $Z(Q) \sim \mathbb{T}^2 \subset \mathbb{C}P^2$.

By Bézout theorem $Z(Q) \cap Z(Z_0) = \{3 \text{ points}\},\$



Rescaling

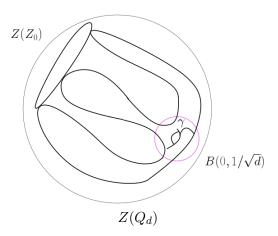


Homogenization

If
$$Q_d := Z_0^d Q \left(1, \sqrt{d}(\frac{Z_1}{Z_0}, \cdots, \frac{Z_n}{Z_0}) \right)$$
, then

Homogenization

If
$$Q_d := Z_0^d Q \left(1, \sqrt{d}(\frac{Z_1}{Z_0}, \cdots, \frac{Z_n}{Z_0}) \right)$$
, then



Barrier method

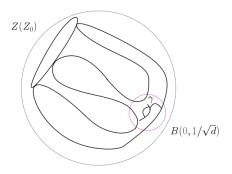
The random P writes

 $\begin{array}{lll} P & = & aQ_d + R, \\ \text{with } a \sim N_{\mathbb{C}}(0,1) & \text{ and } & R \in Q_d^{\perp} \text{ random independent} \end{array}$

Barrier method

The random P writes

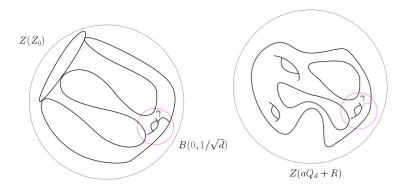
 $\begin{array}{lll} P & = & aQ_d + R, \\ \text{with } a \sim N_{\mathbb{C}}(0,1) & \text{ and } & R \in Q_d^{\perp} \text{ random independent} \end{array}$

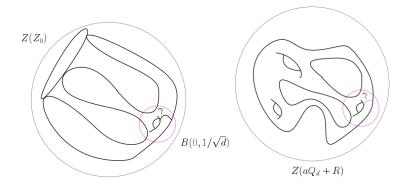


Barrier method

The random P writes

 $\begin{array}{lll} P & = & aQ_d + R, \\ \text{with } a \sim N_{\mathbb{C}}(0,1) & \text{ and } & R \in Q_d^{\perp} \text{ random independent} \end{array}$





Proposition. With uniform probability in d, R does not destroy the toric shape of $Z(Q_d)$ in $B(x, 1/\sqrt{d})$.

Indeed, over $B(1/\sqrt{d})$ and after rescaling,

$$q: \mathbb{B} \subset \mathbb{C}^2 \to \mathbb{C};$$

$$q: \mathbb{B} \subset \mathbb{C}^2 \to \mathbb{C};$$

 \triangleright R looks like a random holomorphic function

$$r: \mathbb{B} \to \mathbb{C};$$

$$q: \mathbb{B} \subset \mathbb{C}^2 \to \mathbb{C};$$

 \blacktriangleright R looks like a random holomorphic function

$$r: \mathbb{B} \to \mathbb{C};$$

 \triangleright P looks like

 $aq + r : \mathbb{B} \to \mathbb{C}.$

$$q: \mathbb{B} \subset \mathbb{C}^2 \to \mathbb{C};$$

 \triangleright R looks like a random holomorphic function

$$r: \mathbb{B} \to \mathbb{C};$$

 \triangleright P looks like

$$aq + r : \mathbb{B} \to \mathbb{C}.$$

• Everything is asymptotically independent of d;

Hence,

• We can perturb q by random r on the unit ball keeping safe the topology of Z(aq + r).

Hence,

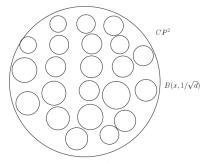
- We can perturb q by random r on the unit ball keeping safe the topology of Z(aq + r).
- ▶ The probability that this happens is positive;

Hence,

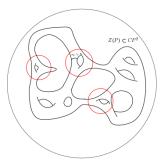
- We can perturb q by random r on the unit ball keeping safe the topology of Z(aq + r).
- ▶ The probability that this happens is positive;
- ▶ The probability that $Z(aQ_r + R)$ has the good topology is uniformly positive.

Hence,

- We can perturb q by random r on the unit ball keeping safe the topology of Z(aq + r).
- ▶ The probability that this happens is positive;
- ▶ The probability that $Z(aQ_r + R)$ has the good topology is uniformly positive.
- ▶ Hence the Proposition.



There is at least $\sim d^2$ disjoint small balls



With uniform probability, a uniform proportion of these d^2 balls contain the affine torus

$\blacktriangleright \ \|Z_0^d\|_{FS} \left([1:\frac{z}{\sqrt{d}}] \right) = \frac{|Z_0^d|}{|Z|^d} = \left(1 + \frac{|z|^2}{d} \right)^{-d/2} \sim_d e^{-\frac{1}{2}|z|^2}.$

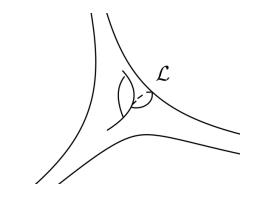
- $||Z_0^d||_{FS} \left([1: \frac{z}{\sqrt{d}}] \right) = \frac{|Z_0^d|}{|Z|^d} = \left(1 + \frac{|z|^2}{d} \right)^{-d/2} \sim_d e^{-\frac{1}{2}|z|^2}.$
- ▶ This means that $1/\sqrt{d}$ is the natural scale of the geometry of degree *d* algebraic hypersurfaces.

- $||Z_0^d||_{FS} \left([1: \frac{z}{\sqrt{d}}] \right) = \frac{|Z_0^d|}{|Z|^d} = \left(1 + \frac{|z|^2}{d} \right)^{-d/2} \sim_d e^{-\frac{1}{2}|z|^2}.$
- ▶ This means that $1/\sqrt{d}$ is the natural scale of the geometry of degree *d* algebraic hypersurfaces.
- Universal semi-classical phenomenon : same for sections of an holomorphic line bundles over a complex projective manifold. Reason : universality of peak sections or universal asymptotic behavior of the Bergmann kernel.

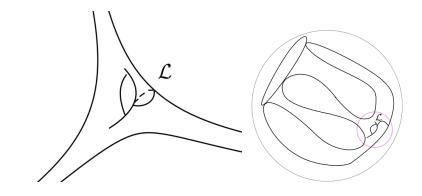
I deas of the proof of Theorem 2

I deas of the proof of Theorem 2

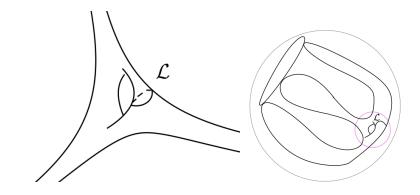
Theorem (Alexander 1936). Every compact smooth real hypersurface \mathcal{L} in \mathbb{R}^n can be C^1 -perturbed into a component \mathcal{L}' of an algebraic hypersurface.



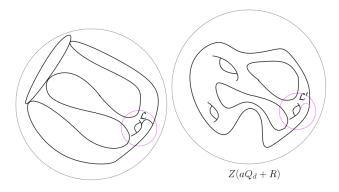
• Choose q such that $\mathcal{L} \subset Z(q)$;



- Choose q such that $\mathcal{L} \subset Z(q)$;
- homogeneize and rescale q into Q_d ;

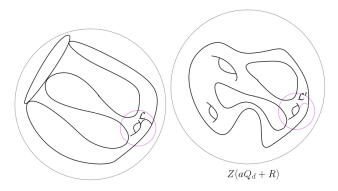


- Choose q such that $\mathcal{L} \subset Z(q)$;
- homogeneize and rescale q into Q_d ;
- decompose $P = aQ_d + R$.



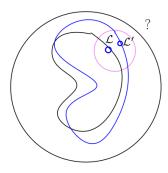
Proposition. With uniform probability, in $B(1/\sqrt{d})$,

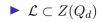
▶ R does not kill the shape of $Z(Q_d)$,

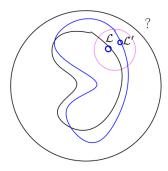


Proposition. With uniform probability, in $B(1/\sqrt{d})$,

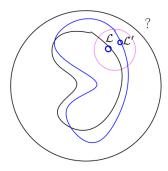
- ▶ R does not kill the shape of $Z(Q_d)$,
- there exists $\mathcal{L}' \subset Z(P)$ Lagrangian for ω_{FS} .



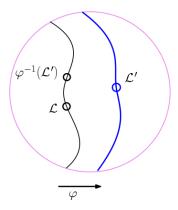


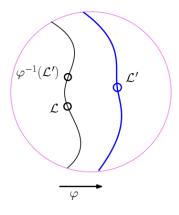


▶ $\mathcal{L} \subset Z(Q_d)$ is Lagrangian for ω_0

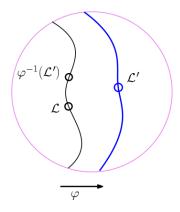


L ⊂ Z(Q_d)is Lagrangian for ω₀;
how to find L' ⊂ Z(P) Lagrangian for ω_{FS}?

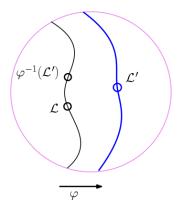




Facts :



$$\blacktriangleright \exists \varphi, \, \varphi(Z(Q_d)) = Z(P).$$

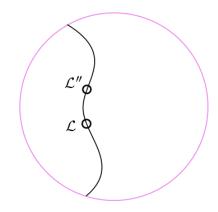


Facts :

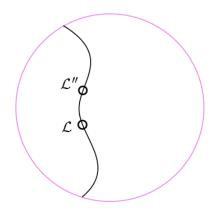
►
$$\exists \varphi, \varphi(Z(Q_d)) = Z(P).$$

► Then

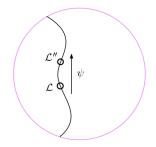
$$\begin{array}{ccc} \mathcal{L}' & \text{Lagrangian for } \omega_{FS} & \text{ in Z(P)} \\ \Leftrightarrow \\ \varphi^{-1}(\mathcal{L}') & \text{Lagrangian for } \varphi^* \omega_{FS} & \text{ in } Z(Q_d) \end{array}$$



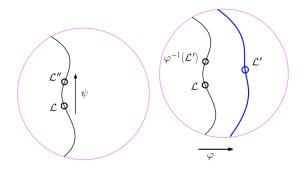
• \mathcal{L} Lagrangian for ω_0 in $Z(Q_d)$;



L Lagrangian for ω₀ in Z(Q_d);
how to find L" Lagrangian for φ^{*}ω_{FS} in Z(Q_d)?

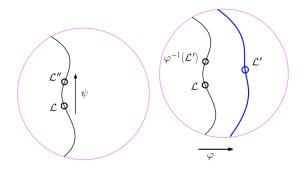


Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.



Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

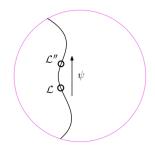
For us :
$$\omega = \phi^* \omega_{FS}$$
,
 $\mathcal{L}'' = \psi(\mathcal{L})$ is Lagrangian, for ω ,
 $\mathcal{L}' = \phi \circ \psi(\mathcal{L})$ is Lagrangian for ω_{FS}



Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

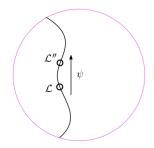
For us :
$$\omega = \phi^* \omega_{FS}$$
,
 $\mathcal{L}'' = \psi(\mathcal{L})$ is Lagrangian, for ω ,
 $\mathcal{L}' = \phi \circ \psi(\mathcal{L})$ is Lagrangian for ω_{FS}

Objection! It could happen that ψ or φ sends \mathcal{L}'' out of the ball!



Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi: Z \cap \mathbb{B} \to Z$ such that

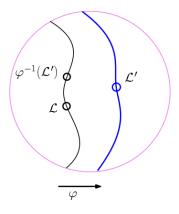
 $\blacktriangleright \psi^* \omega = \omega_0$

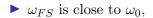


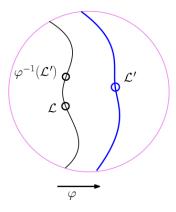
Quantitative Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that

$$\blacktriangleright \ \psi^* \omega = \omega_0$$

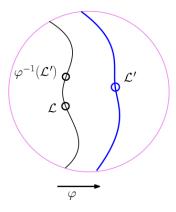
$$\blacktriangleright |\psi - id|$$
 is controlled by $|\omega - \omega_0|$



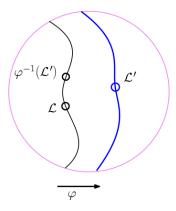




- $\blacktriangleright \omega_{FS}$ is close to ω_0 ,
- with uniform probability R is small,

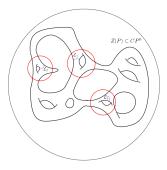


- $\triangleright \omega_{FS}$ is close to ω_0 ,
- with uniform probability R is small,
- so that φ close to the identity,



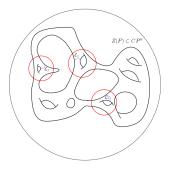
- $\triangleright \omega_{FS}$ is close to ω_0 ,
- with uniform probability R is small,
- ▶ so that φ close to the identity,
- ▶ so that \mathcal{L}'' and \mathcal{L}' stay in the ball. \Box

From one to a lot of Lagrangians



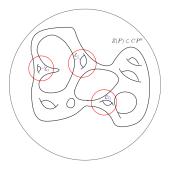
• There exists $\sim d^n$ balls of size $1/\sqrt{d}$

From one to a lot of Lagrangians



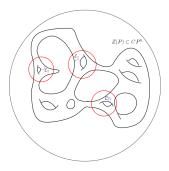
- There exists $\sim d^n$ balls of size $1/\sqrt{d}$
- With uniform probability, a uniform proportion of them contains a Lagrangian copy of *L*

From one to a lot of Lagrangians



- There exists $\sim d^n$ balls of size $1/\sqrt{d}$
- With uniform probability, a uniform proportion of them contains a Lagrangian copy of *L*
- Deterministic conclusion : there exists at least one such hypersurface

From one to a lot of Lagrangians



- There exists $\sim d^n$ balls of size $1/\sqrt{d}$
- ▶ With uniform probability, a uniform proportion of them contains a Lagrangian copy of *L*
- Deterministic conclusion : there exists at least one such hypersurface
- ▶ Hence, all of them have cd^n such Lagrangians.

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

 $N\mathcal{L} \sim T\mathcal{L}.$

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then $\mathcal{NL} \sim T\mathcal{L}$.

Indeed, $\omega = g(\cdot, J \cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. \Box

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

 $N\mathcal{L} \sim T\mathcal{L}.$

Indeed, $\omega = g(\cdot, J \cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. \Box If moreover $\chi(\mathcal{L}) \neq 0$ then

 $0 \neq [\mathcal{L}] \in H_{n-1}(Z).$

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then $N\mathcal{L} \sim T\mathcal{L}$

Indeed, $\omega = g(\cdot, J \cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. \Box \blacktriangleright If moreover $\chi(\mathcal{L}) \neq 0$ then

$$0 \neq [\mathcal{L}] \in H_{n-1}(Z).$$

Indeed for \mathcal{L} orientable,

 $\chi(\mathcal{L}) = \#\{ \text{ zeros of a tangent vector field} \}.$

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then $\mathcal{NL} \sim T\mathcal{L}$.

Indeed, $\omega = g(\cdot, J \cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. \Box \blacktriangleright If moreover $\chi(\mathcal{L}) \neq 0$ then

$$0 \neq [\mathcal{L}] \in H_{n-1}(Z).$$

Indeed for \mathcal{L} orientable,

 $\chi(\mathcal{L}) = \#\{ \text{ zeros of a tangent vector field} \}.$ = $\#\{ \text{ zeros of a normal vector field} \}$

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

 $N\mathcal{L} \sim T\mathcal{L}.$

Indeed, $\omega = g(\cdot, J \cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. \Box \blacktriangleright If moreover $\chi(\mathcal{L}) \neq 0$ then

$$0 \neq [\mathcal{L}] \in H_{n-1}(Z).$$

Indeed for \mathcal{L} orientable,

$$\begin{split} \chi(\mathcal{L}) &= \#\{ \text{ zeros of a tangent vector field} \} \\ &= \#\{ \text{ zeros of a normal vector field} \} \\ &= [\mathcal{L}] \cdot [\mathcal{L}] . \ \Box \end{split}$$

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then $N\mathcal{L} \sim T\mathcal{L}$

Indeed, $\omega = g(\cdot, J \cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. \Box \blacktriangleright If moreover $\chi(\mathcal{L}) \neq 0$ then

$$0 \neq [\mathcal{L}] \in H_{n-1}(Z).$$

Indeed for \mathcal{L} orientable,

 $\chi(\mathcal{L}) = \#\{ \text{ zeros of a tangent vector field} \}.$ = $\#\{ \text{ zeros of a normal vector field} \}$ = $[\mathcal{L}] \cdot [\mathcal{L}]. \square$

Corollary The only orientable compact Lagrangian in \mathbb{R}^4 is the torus.

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

Proof. Let $\omega_t := \omega_0 + t(\omega - \omega_0)$. We search $(\phi_t)_t$, such that

$$\phi_t^*\omega_t = \omega_0.$$

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

Proof. Let $\omega_t := \omega_0 + t(\omega - \omega_0)$. We search $(\phi_t)_t$, such that

$$\phi_t^*\omega_t = \omega_0.$$

Assume that $(X_t)_t$ is a generating vector field, that is

$$\partial_t \phi_t(x) = X_t(\phi_t(x)).$$

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

Proof. Let $\omega_t := \omega_0 + t(\omega - \omega_0)$. We search $(\phi_t)_t$, such that

$$\phi_t^*\omega_t = \omega_0.$$

Assume that $(X_t)_t$ is a generating vector field, that is

$$\partial_t \phi_t(x) = X_t(\phi_t(x)).$$

This implies $\phi_t^* (\mathcal{L}_{X_t} \omega_t + \partial_t \omega_t) = 0$, which is true if

$$d(\omega_t(X_t,\cdot)) + \omega - \omega_0,$$

is true, which is true if

$$\omega_t(X_t, \cdot) + \lambda - \lambda_0.$$

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

Proof. Let $\omega_t := \omega_0 + t(\omega - \omega_0)$. We search $(\phi_t)_t$, such that

$$\phi_t^*\omega_t = \omega_0.$$

Assume that $(X_t)_t$ is a generating vector field, that is

$$\partial_t \phi_t(x) = X_t(\phi_t(x)).$$

This implies $\phi_t^* \left(\mathcal{L}_{X_t} \omega_t + \partial_t \omega_t \right) = 0$, which is true if

$$d(\omega_t(X_t,\cdot)) + \omega - \omega_0,$$

is true, which is true if

$$\omega_t(X_t,\cdot) + \lambda - \lambda_0.$$

Since ω_t is non-degenerate, this has a solution $(X_t)_t$. \square

53/53