Universal representatives of the homology of algebraic hypersurfaces

Conférence ALKAGE
9-13 march 2020

Damien Gayet (Institut Fourier, Grenoble)
Topology of planar projective curves

Let $P \in \mathbb{C}_d^{\text{hom}}[Z_0, Z_1, Z_2]$.
Topology of planar projective curves

Let $P \in \mathbb{C}_d^{\text{hom}}[Z_0, Z_1, Z_2]$. Then

$$Z(P) = \{P = 0\} \subset \mathbb{C}P^2$$
Topology of planar projective curves

Let $P \in \mathbb{C}_{d}^{\text{hom}}[Z_{0}, Z_{1}, Z_{2}]$. Then

$$Z(P) = \{P = 0\} \subset \mathbb{C}P^{2}$$

- is generically an orientable compact smooth Riemann surface;
Topology of planar projective curves

Let $P \in \mathbb{C}_d^{\text{hom}}[Z_0, Z_1, Z_2]$. Then

$$Z(P) = \{P = 0\} \subset \mathbb{CP}^2$$

- is generically an orientable compact smooth Riemann surface;
- connected;
Let \(P \in \mathbb{C}^{\text{hom}}_d[Z_0, Z_1, Z_2] \). Then

\[
Z(P) = \{ P = 0 \} \subset \mathbb{C}P^2
\]

- is generically an orientable compact smooth Riemann surface;
- connected;
- with a constant genus \(\frac{1}{2}(d - 1)(d - 2) \).
$d = 1$ or $d = 2$: sphere

$\dim \text{C}^{\text{hom}}_d[Z_0, Z_1, Z_2] \sim d_g$.

Same for the moduli space of projective curves.
\[d = 1 \text{ or } d = 2 : \text{sphere} \]
\[d = 3 : \text{torus} \]
- $d = 1$ or $d = 2$: sphere
- $d = 3$: torus
- $d = 4$: genus $g = 3$
- $d = 1$ or $d = 2$: sphere
- $d = 3$: torus
- $d = 4$: genus $g = 3$
- $\dim \mathbb{C}_{d}^{\text{hom}}[Z_0, Z_1, Z_2] \sim_d g$.
- $d = 1$ or $d = 2$: sphere
- $d = 3$: torus
- $d = 4$: genus $g = 3$
- $\dim \mathbb{C}_{\text{hom}}^d[Z_0, Z_1, Z_2] \sim_d g$
- Same for the moduli space of projective curves
Very different in the real case: various number of components...
... and various possible configurations:
16th Hilbert problem
(here the maximal degree 6 possible curves)
Geometry of planar projective curves

What about the geometry if $Z(P)$ is equipped with the restriction of the ambient metric g_{FS}?
What about the geometry if \(Z(P) \) is equipped with the restriction of the ambient metric \(g_{FS} \)?

- **W. Wirtinger theorem**: \(\forall P, \text{Vol}(Z(P)) = d. \)
Geometry of planar projective curves

What about the geometry if \(Z(P) \) is equipped with the restriction of the ambient metric \(g_{FS} \)?

- **W. Wirtinger theorem**: \(\forall P, \Vol(Z(P)) = d. \)
- However \(Z \) can have very different shapes:
What about the geometry if $Z(P)$ is equipped with the restriction of the ambient metric g_{FS}?

- **W. Wirtinger theorem**: $\forall P, \text{Vol}(Z(P)) = d$.
- However Z can have very different shapes:
 1. if P is close to Z_0^d, Z is concentrated near a round sphere,
What about the geometry if $Z(P)$ is equipped with the restriction of the ambient metric g_{FS}?

- **W. Wirtinger theorem**: $\forall P, \text{Vol}(Z(P)) = d$.
- However Z can have very different shapes:
 1. If P is close to Z_0^d, Z is concentrated near a round sphere,
 2. If P is of high degree d and close to the product of equidistributed d lines, then Z is equidistributed.
If P is taken at random, what can be said more?

Theorem (B. Shiffman-S. Zelditch 1998) Almost surely, a sequence of increasing degree random complex curves gets equidistributed in $\mathbb{C}P^2$.
Complex Fubini-Study measure:
Complex Fubini-Study measure:

\[P = \sum_{i_0 + i_1 + i_2 = d} a_{i_0 i_1 i_2} \frac{Z_0^{i_0} Z_1^{i_1} Z_2^{i_2}}{\sqrt{i_0! i_1! i_2!}}, \]

where \(a_{i_0 i_1 i_2} \) are i.i.d. normal variables \(\sim N_{\mathbb{C}}(0, 1) \).
Complex Fubini-Study measure:

\[P = \sum_{i_0+i_1+i_2=d} a_{i_0i_1i_2} \frac{Z_0^{i_0} Z_1^{i_1} Z_2^{i_2}}{\sqrt{i_0!i_1!i_2!}}, \]

where \(a_{i_0i_1i_2} \) are i.i.d. normal variables \(\sim N_\mathbb{C}(0, 1) \).

This is the Gaussian measure associated to the Fubini-Study \(L^2 \)-scalar product on the space of polynomials:

\[\langle P, Q \rangle_{FS} = \int_{\mathbb{C}P^n} \frac{P(Z)\overline{Q(Z)}}{\|Z\|^{2d}} dvol_{FS}. \]
Complex Fubini-Study measure:

\[P = \sum_{i_0+i_1+i_2=d} a_{i_0i_1i_2} \frac{Z_0^{i_0} Z_1^{i_1} Z_2^{i_2}}{\sqrt{i_0!i_1!i_2!}}, \]

where \(a_{i_0i_1i_2} \) are i.i.d. normal variables \(\sim N_C(0, 1) \).

This is the Gaussian measure associated to the Fubini-Study \(L^2 \)-scalar product on the space of polynomials:

\[\langle P, Q \rangle_{FS} = \int_{\mathbb{C}P^n} \frac{P(Z)\overline{Q(Z)}}{\|Z\|^{2d}} \, dvol_{FS}. \]

Generalizes for random sections of high powers of an ample line bundle over a compact Kähler manifold.
What about the length of the **systole** of the random complex curve: its shortest non-contractible real loop?
The origins: hyperbolic surfaces

Let

\[\mathcal{M}_g = \{ \text{genus } g \text{ compact smooth surface with a metric of curvature } -1 \}. \]
The origins: hyperbolic surfaces

Let

$$\mathcal{M}_g = \{\text{genus } g \text{ compact smooth surface with a metric of curvature } -1\}.$$

- No bound for the diameters, even at fixed g.

Theorem (M. Mirzakhani 2013). There exist $0 < c < 1$ such that for all $g \geq 2$, $c \leq \text{Prob}_{WP}[\text{Length of the systole} \leq 1] \leq 1 - c$.

10/53
The origins: hyperbolic surfaces

Let

\[\mathcal{M}_g = \{ \text{genus } g \text{ compact smooth surface with a metric of curvature } -1 \}. \]

- No bound for the diameters, even at fixed \(g \).
- \(\text{dim}_\mathbb{C} \mathcal{M}_g = 3g - 3 \)
The origins : hyperbolic surfaces

Let

\[\mathcal{M}_g = \{ \text{genus } g \text{ compact smooth surface with a metric of curvature } -1 \}. \]

- No bound for the diameters, even at fixed \(g \).
- \(\dim_{\mathbb{C}} \mathcal{M}_g = 3g - 3 \)
- There exists a natural probability measure \(\text{Prob}_{WP} \) on \(\mathcal{M}_g \).
The origins: hyperbolic surfaces

Let

\[M_g = \{ \text{genus } g \text{ compact smooth surface} \]
with a metric of curvature \(-1\} .

- No bound for the diameters, even at fixed \(g \).
- \(\dim_{\mathbb{C}} M_g = 3g - 3 \)
- There exists a natural probability measure \(\text{Prob}_{WP} \) on \(M_g \).

Theorem (M. Mirzakhani 2013). There exist \(0 < c < 1 \) such that for all \(g \geq 2 \),

\[c \leq \text{Prob}_{WP}[\text{Length of the systole } \leq 1] \leq 1 - c . \]
Random projective curves

Theorem 1. There exists $c > 0$,

$$\forall d \gg 1, \ c \leq \text{Prob}_{FS} [\text{Length}_{\sqrt{dg}_{FS}} \text{ of the systole } \leq 1].$$
Recall that $\dim H_1(Z) = 2g \sim d^2$.
Recall that \(\dim H_1(Z) = 2g \sim d^2 \).

Theorem 1’ There exists \(c > 0 \),

\[
\forall d \gg 1, \ c \leq \text{Prob}_{FS} \left[\exists \gamma_1, \cdots, \gamma_{cd^2}, \forall i, \text{Length}(\gamma_i) \leq 1 \right. \\
\text{and } [\gamma_1], \cdots, [\gamma_{cd^2}] \\
is an independent family of } H_1(Z(P)).
\]
For every d, there exists a basis of $H_1(Z)$ such that a uniform proportion of its elements are represented by small loops with uniform probability.
Very useless *deterministic* Corollary. There exists $c > 0$, such that for *any* genus g surface,

$$\dim H_1 \geq cg.$$
Very useless deterministic Corollary. There exists $c > 0$, such that for any genus g surface,

$$\dim H_1 \geq cg.$$

In higher dimensions,
Very useless *deterministic* Corollary. There exists $c > 0$, such that for *any* genus g surface,

$$\dim H_1 \geq cg.$$

In higher dimensions,

- complex curves become complex hypersurfaces;
Very useless *deterministic* Corollary. There exists $c > 0$, such that for *any* genus g surface,

$$\dim H_1 \geq cg.$$

In higher dimensions,

- complex curves become complex hypersurfaces;
- non-contractible loops become Lagrangian submanifolds;
Very useless deterministic Corollary. There exists $c > 0$, such that for any genus g surface,

$$\dim H_1 \geq cg.$$

In higher dimensions,

- complex curves become complex hypersurfaces;
- non-contractible loops become Lagrangian submanifolds;
- the useless deterministic bound becomes an non-trivial estimate for homological (Lagrangian) representatives.
Higher dimensions

Let $P \in \mathbb{C}_d^{hom}[Z_0, Z_1, \cdots, Z_n]$.
Higher dimensions

Let $P \in \mathbb{C}^{\text{hom}}_{d}[Z_0, Z_1, \cdots, Z_n]$. Then

$$Z(P) = \{P = 0\} \subset \mathbb{C}P^n$$
Higher dimensions

Let $P \in \mathbb{C}^{h_{\text{om}}}_d[Z_0, Z_1, \cdots, Z_n]$. Then

$$Z(P) = \{ P = 0 \} \subset \mathbb{C}P^n$$

is generically a smooth complex hypersurface, or $2n - 2$ real submanifold,
Higher dimensions

Let $P \in \mathbb{C}^{\text{hom}}_d[Z_0, Z_1, \ldots, Z_n]$. Then

$$Z(P) = \{P = 0\} \subset \mathbb{C}P^n$$

- is generically a smooth complex hypersurface, or $2n - 2$ real submanifold,
- with a constant diffeomorphism type.
Lefschetz theorem

\[\forall k < n - 1, \ H_k(Z(P)) = H_k(\mathbb{C}P^n). \]
Lefschetz theorem

\[\forall k < n - 1, \ H_k(Z(P)) = H_k(\mathbb{C}P^n). \]

Same for homotopy groups. In particular, \(Z \) is connected for \(n \geq 2 \) and simply connected for \(n \geq 3 \).
Lefschetz theorem

$$\forall k < n - 1, \ H_k(Z(P)) = H_k(\mathbb{C}P^n).$$

Same for homotopy groups. In particular, Z is connected for $n \geq 2$ and simply connected for $n \geq 3$.

Chern computation

$$\dim H_{n-1}(Z) \sim d^n.$$
Lefschetz theorem

\[\forall k < n - 1, \ H_k(Z(P)) = H_k(CP^n). \]

Same for homotopy groups. In particular, \(Z \) is connected for \(n \geq 2 \) and simply connected for \(n \geq 3 \).

Chern computation

\[\dim H_{n-1}(Z) \sim d^n. \]

\[\Rightarrow \] For \(n = 2 \), \(Z \subset CP^2 \) is a connected complex curve and its interesting topology lies in \(H_1(Z) \), whose dimension grows like \(d^2 \).
Lefschetz theorem

\[\forall k < n - 1, \quad H_k(Z(P)) = H_k(\mathbb{C}P^n). \]

Same for homotopy groups. In particular, \(Z \) is connected for \(n \geq 2 \) and simply connected for \(n \geq 3 \).

Chern computation

\[\dim H_{n-1}(Z) \sim d^n. \]

⇒ For \(n = 2 \), \(Z \subset \mathbb{C}P^2 \) is a connected complex curve and its interesting topology lies in \(H_1(Z) \), whose dimension grows like \(d^2 \).

⇒ For \(n = 3 \), \(Z \subset \mathbb{C}P^3 \) is a connected and simply connected complex surface and its interesting homology lies in \(H_2(Z) \), that is for real surfaces inside it.
Definition. Let (M^n, g) be a compact smooth Riemannian n-manifold. For any $k \in \{1, \cdots, n\}$, let

\[
\text{sys}_k(M) := 2 \inf \{ \text{diam}\mathcal{L} \mid [\mathcal{L}] \neq 0 \text{ in } H_k(M) \}
\]

be the Berger k-systole.
Small non-trivial submanifolds

Definition. Let \((M^n, g)\) be a compact smooth Riemannian \(n\)-manifold. For any \(k \in \{1, \cdots, n\}\), let

\[
\text{sys}_k(M) := 2 \inf \{ \text{diam}\mathcal{L} \mid [\mathcal{L}] \neq 0 \text{ in } H_k(M) \}
\]

be the Berger \(k\)-systole. Facts:

1. Length(systole\((M)\)) \(\leq\) \(\text{sys}_1(M)\).
2. If \(H_k(M) \neq 0\), then \(\text{sys}_k(M) > 0\).
Definition. Let \((M^n, g)\) be a compact smooth Riemannian \(n\)-manifold. For any \(k \in \{1, \cdots, n\}\), let

\[
\text{sys}_k(M) := 2 \inf \{ \text{diam} \mathcal{L} \mid [\mathcal{L}] \neq 0 \text{ in } H_k(M) \}
\]

be the Berger \(k\)-systole. Facts:

1. \(\text{Length} (\text{systole}(M)) \leq \text{sys}_1(M)\).
Small non-trivial submanifolds

Definition. Let \((M^n, g)\) be a compact smooth Riemannian \(n\)-manifold. For any \(k \in \{1, \cdots, n\}\), let

\[
sys_k(M) := 2 \inf \{ \text{diam}\mathcal{L} \mid [\mathcal{L}] \neq 0 \text{ in } H_k(M) \}
\]

be the Berger \(k\)-systole. Facts:

1. \(\text{Length}(\text{systole}(M)) \leq \text{sys}_1(M)\).
2. If \(H_k(M) \neq 0\), then \(\text{sys}_k(M) > 0\).
Theorem 2 Assume that n is odd. Then,

$$\exists c > 0, \forall d \gg 1, \ c \leq \text{Prob}[\text{sys}_{n-1}(Z(P)) \leq 1].$$
Theorem 2' Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \forall d \gg 1, \ c \leq \text{Prob}\left[\exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \text{ pairwise disjoint, } \forall i, \mathcal{L}_i \sim_{\text{diff}} \mathcal{L}, \ \text{diam}\mathcal{L}_i \leq 1 \right]$$

and $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$.

Recall: $\dim H_{*}(\mathbb{Z}(P)) \sim d \to \infty \dim H_{n-1}(\mathbb{Z}(P))$.

19/53
Theorem 2' Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \forall d \gg 1, \ c \leq \text{Prob} \left[\exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \text{ pairwise disjoint}, \right.$$

$$\forall i, \mathcal{L}_i \sim_{\text{diff}} \mathcal{L}, \ \text{diam} \mathcal{L}_i \leq 1$$

and $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$.

Recall: $\dim H_{\ast}(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n$.
Deterministic corollary Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \forall d \gg 1, \forall P \in \mathbb{C}^d_{\text{hom}}, \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

- pairwise disjoint,
- diffeomorphic to \mathcal{L},
- $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$.
Deterministic corollary Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \forall d \gg 1, \forall P \in \mathbb{C}^d, \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

- pairwise disjoint,
- diffeomorphic to \mathcal{L},
- $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$.

Universal phenomenon: Same holds for zeros of sections of high powers of an ample line bundle over a compact Kähler manifold.
For any real hypersurface \mathcal{L} with non-vanishing Euler characteristic and every large enough degree, there exists a basis of $H_{n-1}(Z)$ such that a uniform proportion of its elements are represented by submanifolds diffeomorphic to \mathcal{L}.
Hypersurfaces as symplectic manifolds

Recall that $\omega_{FS} = g_{FS}(\cdot, J\cdot)$, where J is the complex structure and g_{FS}.
Hypersurfaces as symplectic manifolds

Recall that $\omega_{FS} = g_{FS}(\cdot, J\cdot)$, where J is the complex structure and g_{FS}.

Facts:

- $(Z(P), \omega_{FS}|_{Z(P)})$ is a symplectic manifold.
Recall that $\omega_{FS} = g_{FS}(\cdot, J\cdot)$, where J is the complex structure and g_{FS}.

Facts:

- $(Z(P), \omega_{FS}|_{Z(P)})$ is a symplectic manifold.
- If P, Q have the same degree,
 \[(Z(P), \omega_{FS}|_{Z(P)}) \sim_{sympl} (Z(Q), \omega_{FS}|_{Z(Q)}).\]
Hypersurfaces as symplectic manifolds

Recall that $\omega_{FS} = g_{FS}(\cdot, J\cdot)$, where J is the complex structure and g_{FS}.

Facts:

- $(Z(P), \omega_{FS}|_{Z(P)})$ is a symplectic manifold.
- If P, Q have the same degree,

$$
(Z(P), \omega_{FS}|_{Z(P)}) \sim_{sympl} (Z(Q), \omega_{FS}|_{Z(Q)}).
$$

- Hence, if we prove that a property of symplectic nature is true with positive probability, then it is true for any hypersurface.
Symplectic manifolds

(M^{2n}, ω) is a symplectic manifold if ω is a closed non-degenerate 2-form.
Symplectic manifolds

\((M^{2n}, \omega)\) is a symplectic manifold if \(\omega\) is a closed non-degenerate 2-form.

\(\Rightarrow (\mathbb{R}^{2n}, \omega_0)\) with \(\omega_0 := \sum_{i=1}^{n} dx_i \wedge dy_i\).
Symplectic manifolds

\((M^{2n}, \omega)\) is a *symplectic manifold* if \(\omega\) is a closed non-degenerate 2-form.

- \((\mathbb{R}^{2n}, \omega_0)\) with \(\omega_0 := \sum_{i=1}^{n} dx_i \wedge dy_i\).
- Darboux theorem: locally any symplectic manifold is symplectomorphic to \((\mathbb{R}^{2n}, \omega_0)\).
Symplectic manifolds

(M^{2n}, ω) is a *symplectic manifold* if ω is a closed non-degenerate 2-form.

- $(\mathbb{R}^{2n}, \omega_0)$ with $\omega_0 := \sum_{i=1}^{n} dx_i \wedge dy_i$.
- Darboux theorem: locally any symplectic manifold is symplectomorphic to $(\mathbb{R}^{2n}, \omega_0)$.
- A real Riemannian surface (M, g) is symplectic when equipped with its area form $d\text{Vol}_g$.

Example

- $(\mathbb{C}P^n, \omega_{\text{FS}})$ is symplectic.
- Any complex hypersurface $Z(P) \subset \mathbb{C}P^n$ is symplectic for the restriction of ω_{FS}.
- The cotangent bundle T^*M of a manifold is naturally symplectic.
Symplectic manifolds

\((M^{2n}, \omega)\) is a symplectic manifold if \(\omega\) is a closed non-degenerate 2-form.

- \((\mathbb{R}^{2n}, \omega_0)\) with \(\omega_0 := \sum_{i=1}^{n} dx_i \wedge dy_i\).
- Darboux theorem: locally any symplectic manifold is symplectomorphic to \((\mathbb{R}^{2n}, \omega_0)\).
- A real Riemannian surface \((M, g)\) is symplectic when equipped with its area form \(d\text{Vol}_g\).
- \((\mathbb{C}P^n, \omega_{FS})\) is symplectic.
Symplectic manifolds

(M^{2n}, ω) is a *symplectic manifold* if ω is a closed non-degenerate 2-form.

- $(\mathbb{R}^{2n}, \omega_0)$ with $\omega_0 := \sum_{i=1}^{n} dx_i \wedge dy_i$.
- Darboux theorem: locally any symplectic manifold is symplectomorphic to $(\mathbb{R}^{2n}, \omega_0)$.
- A real Riemannian surface (M, g) is symplectic when equipped with its area form $d\text{Vol}_g$.
- $(\mathbb{C}P^n, \omega_{FS})$ is symplectic.
- Any complex hypersurface $Z(P) \subset \mathbb{C}P^n$ is symplectic for the restriction of ω_{FS}.
Symplectic manifolds

\((M^{2n}, \omega)\) is a symplectic manifold if \(\omega\) is a closed non-degenerate 2-form.

- \((\mathbb{R}^{2n}, \omega_0)\) with \(\omega_0 := \sum_{i=1}^{n} dx_i \wedge dy_i\).
- Darboux theorem: locally any symplectic manifold is symplectomorphic to \((\mathbb{R}^{2n}, \omega_0)\).
- A real Riemannian surface \((M, g)\) is symplectic when equipped with its area form \(d\text{Vol}_g\).
- \((\mathbb{C}P^n, \omega_{FS})\) is symplectic.
- Any complex hypersurface \(Z(P) \subset \mathbb{C}P^n\) is symplectic for the restriction of \(\omega_{FS}\).
- The cotangent bundle \(T^*M\) of a manifold is naturally symplectic.
A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real n-submanifold such that $\omega|_{T\mathcal{L}} = 0$.
Lagrangians

A Lagrangian submanifold \mathcal{L} of (M^{2n},ω) is a real n-submanifold such that $\omega|_{T\mathcal{L}} = 0$.

- Any real curve of a real surface is Lagrangian.
Lagrangians

A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real n-submanifold such that $\omega|_{T\mathcal{L}} = 0$.

- Any real curve of a real surface is Lagrangian.
- Easy: the only orientable compact Lagrangian in (\mathbb{C}^2, ω_0) is the 2–torus.
Lagrangians

A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real n-submanifold such that $\omega|_{T\mathcal{L}} = 0$.

- Any real curve of a real surface is Lagrangian.
- Easy: the only orientable compact Lagrangian in (\mathbb{C}^2, ω_0) is the 2–torus.
- Very hard: there is no Lagrangian sphere in \mathbb{C}^3 (Gromov 1985);
A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real n-submanifold such that $\omega|_{T\mathcal{L}} = 0$.

- Any real curve of a real surface is Lagrangian.
- Easy: the only orientable compact Lagrangian in (\mathbb{C}^2, ω_0) is the 2–torus.
- Very hard: there is no Lagrangian sphere in \mathbb{C}^3 (Gromov 1985);
- Very easy to deform a Lagrangian: locally as much as the differentials of real functions over it.
A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real n-submanifold such that $\omega|_{T\mathcal{L}} = 0$.

- Any real curve of a real surface is Lagrangian.
- Easy: the only orientable compact Lagrangian in (\mathbb{C}^2, ω_0) is the 2–torus.
- Very hard: there is no Lagrangian sphere in \mathbb{C}^3 (Gromov 1985);
- Very easy to deform a Lagrangian: locally as much as the differentials of real functions over it.
- The graph of a symplectomorphism is Lagrangian;
A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real n-submanifold such that $\omega|_{T\mathcal{L}} = 0$.

- Any real curve of a real surface is Lagrangian.
- Easy: the only orientable compact Lagrangian in (\mathbb{C}^2, ω_0) is the 2–torus.
- Very hard: there is no Lagrangian sphere in \mathbb{C}^3 (Gromov 1985);
- Very easy to deform a Lagrangian: locally as much as the differentials of real functions over it.
- The graph of a symplectomorphism is Lagrangian;
- Motto: Lagrangians are the fundamental bricks of symplectic manifolds and their invariants (in particular with Floer homology).
If \(p \in \mathbb{R}[z_1, \cdots, z_n] \) then

\[
Z(p) \cap \mathbb{R}^n
\]

is Lagrangian in \((Z(p), \omega_0|_{Z(p)})\).
If $p \in \mathbb{R}[z_1, \cdots, z_n]$ then

$$Z(p) \cap \mathbb{R}^n$$

is Lagrangian in $(Z(p), \omega_0|_{Z(p)})$.

If $P \in \mathbb{R}_{hom}^d[Z_0, \cdots, Z_n]$ then

$$Z(P) \cap \mathbb{R}P^n$$

is Lagrangian in $(Z(P), \omega_{FS}|_{Z(P)})$.
Recall that for a degree d polynomial P, $\dim H^\ast(Z(P)) \sim d \to \infty \dim H^{n-1}(Z(P)) \sim d^n$.

Theorem 2. Let $L \subset \mathbb{R}^n$ be any compact hypersurface with $\chi(L) \neq 0$. Then $\exists c > 0, \forall d \gg 1, \forall P \in C^d_{\text{hom}}, \exists L_1, \ldots, L_{cd^n} \subset Z(P)$ are pairwise disjoint, diffeomorphic to L, $[L_1], \ldots, [L_{cd^n}]$ form an independent family of $H^{n-1}(Z(P))$, Lagrangian submanifolds of $(Z(P), \omega_{\text{FS}}|_{Z(P)})$.

Lagrangians of algebraic hypersurfaces
Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

$$\dim H_\ast(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n.$$
Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

$$\dim H_\ast(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n.$$

Theorem 2. Let $L \subset \mathbb{R}^{n \, \text{odd}}$ be any compact hypersurface with $\chi(L) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}_\text{hom}^d, \ \exists L_1, \cdots, L_{cd^n} \subset Z(P)$$
Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

$$\dim H_*(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n.$$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \forall d \gg 1, \forall P \in \mathbb{C}^d_{\text{hom}}, \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

\blacktriangleright pairwise disjoint,
Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

$$\dim H_*(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n.$$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \forall d \gg 1, \forall P \in \mathbb{C}_\text{hom}^d, \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

- pairwise disjoint,
- diffeomorphic to $\mathcal{L},$
Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

$$\dim H_*(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n.$$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^d_{\text{hom}}, \ \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

- pairwise disjoint,
- diffeomorphic to \mathcal{L},
- $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$.
Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

$$\dim H_*(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n.$$

Theorem 2. Let $L \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(L) \neq 0$. Then

$$\exists c > 0, \quad \forall d \gg 1, \quad \forall P \in \mathbb{C}_h^d, \quad \exists L_1, \cdots, L_{cd^n} \subset Z(P)$$

- pairwise disjoint,
- diffeomorphic to L,
- $[L_1], \cdots, [L_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$,
- Lagrangian submanifolds of $(Z(P), \omega_{FS}|_{Z(P)})$.

For any real hypersurface \mathcal{L} with non-vanishing Euler characteristic and every large enough degree, there exists a basis of $H_{n-1}(Z)$ such that a uniform proportion of its elements are represented by Lagrangian submanifolds diffeomorphic to \mathcal{L}.
Former results

From Picard-Lefschetz theory:

Theorem (S. Chmutov 1982). There exists $\sim \frac{d^n}{\sqrt{d}}$ disjoint Lagrangian spheres in $\mathbb{Z}(P)$.

From tropical arguments:

Theorem (G. Mikhalkin 2004). There exists $c_d n$ disjoint Lagrangian spheres and $c_d n$ Lagrangian tori, whose classes in $H^{n-1}(\mathbb{Z}(P))$ are independent, with c explicit and natural.
Former results

From Picard-Lefschetz theory:

Theorem (S. Chmutov 1982). There exists $\sim \frac{d^n}{\sqrt{d}}$ disjoint Lagrangian spheres in $Z(P)$.

From tropical arguments:

Theorem (G. Mikhalkin 2004). There exists cd^n disjoint Lagrangian spheres and cd^n Lagrangian tori, whose classes in $H_{n-1}(Z(P))$ are independent, with c explicit and natural.
From random real algebraic geometry:

Theorem (with J.-Y. Welschinger 2014). Let $\mathcal{L} \subset \mathbb{R}^n$ as before. Then there exists (an ugly but explicit and universal) $c > 0$, such that for $d \gg 1$,

$$c < \text{Prob}_{FS,\mathbb{R}}[\exists \text{ at least } c\sqrt{d^n} \text{ components of } Z(P) \cap \mathbb{RP}^n \text{ diffeomorphic to } \mathcal{L}].$$
From random real algebraic geometry:

Theorem (with J.-Y. Welschinger 2014). Let $\mathcal{L} \subset \mathbb{R}^n$ as before. Then there exists (an ugly but explicit and universal) $c > 0$, such that for $d \gg 1$,

$$c < \text{Prob}_{F_{S,\mathbb{R}}} \left[\exists \text{ at least } c\sqrt{d^n} \text{ components of } Z(P) \cap \mathbb{R}P^n \text{ diffeomorphic to } \mathcal{L} \right].$$

Corollary. At least $c\sqrt{d^n}$ disjoint Lagrangians diffeomorphic to \mathcal{L} in any $Z(P)$.
Proof of Theorem 1 (systoles)

Theorem 1. There exists $c > 0$,

$$\forall d \gg 1, \ c \leq \text{Prob}_{FS}[\text{Length}_{\sqrt{d}g_{FS}} \text{ of the systole} \leq 1].$$
Theorem 1” There exists $c > 0$,

\[\forall x \in \mathbb{C}P^n, \forall d \gg 1, \ c \leq \text{Prob}_{FS} \left[\exists \, \gamma \subset Z(P) \cap B(x, \frac{1}{\sqrt{d}}) \right. \]

\[\text{Length}(\gamma) \leq \frac{1}{\sqrt{d}}, \]

\[\gamma \text{ non contractible} \].
Artificial non-contractible curve

Pick a generic $Q \in \mathbb{R}^3_{\text{hom}}[Z_0, Z_1, Z_2]$.
Artificial non-contractible curve

Pick a generic $Q \in \mathbb{R}^3_{hom}[Z_0, Z_1, Z_2]$. Then

$$Z(Q) \sim \mathbb{T}^2 \subset \mathbb{C}P^2.$$
Artificial non-contractible curve

Pick a generic $Q \in \mathbb{R}^3_{hom}[Z_0, Z_1, Z_2]$. Then

$$Z(Q) \sim \mathbb{T}^2 \subset \mathbb{C}P^2.$$

By Bézout theorem $Z(Q) \cap Z(Z_0) = \{3 \text{ points}\}$,
Artificial non-contractible curve

Pick a generic $Q \in \mathbb{R}^3_{\text{hom}}[Z_0, Z_1, Z_2]$. Then

$$Z(Q) \sim \mathbb{T}^2 \subset \mathbb{C}P^2.$$

By Bézout theorem $Z(Q) \cap Z(Z_0) = \{3 \text{ points}\}$,
Rescaling

\[Z \left[Q(1, \sqrt{d}z_1, \sqrt{d}z_2) \right] \]

\[B(1/\sqrt{d}) \]
Homogenization

If \(Q_d := Z_0^d Q \left(1, \sqrt{d} \left(\frac{Z_1}{Z_0}, \ldots, \frac{Z_n}{Z_0} \right) \right) \), then
Homogenization

If $Q_d := Z_0^d Q \left(1, \sqrt{d} \left(\frac{Z_1}{Z_0}, \cdots, \frac{Z_n}{Z_0}\right)\right)$, then
Barrier method

The random P writes

$$P = a Q_d + R,$$

with $a \sim N_{\mathbb{C}}(0, 1)$ and $R \in Q_d^\perp$ random independent.
Barrier method

The random P writes

$$P = aQ_d + R,$$

with $a \sim N_C(0, 1)$ and $R \in Q_d$ random independent.
Barrier method

The random P writes

$$P = aQ_d + R,$$

with $a \sim N_\mathbb{C}(0, 1)$ and $R \in Q_d^\perp$ random independent.
Proposition. With uniform probability in d, R does not destroy the toric shape of $Z(Q_d)$ in $B(x, 1/\sqrt{d})$.
Indeed, over $B(1/\sqrt{d})$ and after rescaling,
Indeed, over $B(1/\sqrt{d})$ and after rescaling,

- Q_d looks like the fixed polynomial

$$q : \mathbb{B} \subset \mathbb{C}^2 \rightarrow \mathbb{C};$$
Indeed, over $B(1/\sqrt{d})$ and after rescaling,

- Q_d looks like the fixed polynomial

 $$q : \mathbb{B} \subset \mathbb{C}^2 \to \mathbb{C};$$

- R looks like a random holomorphic function

 $$r : \mathbb{B} \to \mathbb{C};$$
Indeed, over $B(1/\sqrt{d})$ and after rescaling,

- Q_d looks like the fixed polynomial
 $$q : \mathbb{B} \subset \mathbb{C}^2 \to \mathbb{C};$$

- R looks like a random holomorphic function
 $$r : \mathbb{B} \to \mathbb{C};$$

- P looks like
 $$aq + r : \mathbb{B} \to \mathbb{C}.$$
Indeed, over $B(1/\sqrt{d})$ and after rescaling,

- Q_d looks like the fixed polynomial

$$q : \mathbb{B} \subset \mathbb{C}^2 \to \mathbb{C};$$

- R looks like a random holomorphic function

$$r : \mathbb{B} \to \mathbb{C};$$

- P looks like

$$aq + r : \mathbb{B} \to \mathbb{C}.$$

- Everything is asymptotically independent of d;
Hence,

- We can perturb q by random r on the unit ball keeping safe the topology of $Z(aq + r)$.
Hence,

- We can perturb q by random r on the unit ball keeping safe the topology of $Z(aq + r)$.
- The probability that this happens is positive;
Hence,

- We can perturb q by random r on the unit ball keeping safe the topology of $Z(aq + r)$.
- The probability that this happens is positive;
- The probability that $Z(aQ_r + R)$ has the good topology is uniformly positive.
Hence,

- We can perturb q by random r on the unit ball keeping safe the topology of $Z(aq + r)$.
- The probability that this happens is positive;
- The probability that $Z(aQ_r + R)$ has the good topology is uniformly positive.
- Hence the Proposition.
There is at least $\sim d^2$ disjoint small balls
With uniform probability, a uniform proportion of these d^2 balls contain the affine torus
Why $1/\sqrt{d}$?

This means that $1/\sqrt{d}$ is the natural scale of the geometry of degree d algebraic hypersurfaces.

Universal semi-classical phenomenon: same for sections of an holomorphic line bundles over a complex projective manifold. Reason: universality of peak sections or universal asymptotic behavior of the Bergmann kernel.
Why $1/\sqrt{d}$?

\[\| Z_0^d \|_{FS} \left(\left[1 : \frac{z}{\sqrt{d}} \right] \right) = \frac{|Z_0^d|}{|Z|^d} = (1 + \frac{|z|^2}{d})^{-d/2} \sim d \ e^{-\frac{1}{2}|z|^2}. \]
Why $1/\sqrt{d}$?

- $\|Z_0^d\|_{FS}([1 : \frac{z}{\sqrt{d}}]) = \frac{|Z_0^d|}{|Z|^d} = (1 + \frac{|z|^2}{d})^{-d/2} \sim d \ e^{-\frac{1}{2}|z|^2}$.

- This means that $1/\sqrt{d}$ is the natural scale of the geometry of degree d algebraic hypersurfaces.
Why $1/\sqrt{d}$?

$\|Z_0^d\|_{FS}([1 : \frac{z}{\sqrt{d}}]) = \frac{|Z_0^d|}{|Z|^d} = (1 + \frac{|z|^2}{d})^{-d/2} \sim d e^{-\frac{1}{2}|z|^2}.$

This means that $1/\sqrt{d}$ is the natural scale of the geometry of degree d algebraic hypersurfaces.

Universal semi-classical phenomenon: same for sections of an holomorphic line bundles over a complex projective manifold. Reason: universality of peak sections or universal asymptotic behavior of the Bergmann kernel.
Ideas of the proof of Theorem 2
Ideas of the proof of Theorem 2

Theorem (Alexander 1936). Every compact smooth real hypersurface \mathcal{L} in \mathbb{R}^n can be C^1-perturbed into a component \mathcal{L}' of an algebraic hypersurface.
Choose q such that $\mathcal{L} \subset Z(q)$;
Choose q such that $\mathcal{L} \subset Z(q)$;

homogeneize and rescale q into Q_d;
Choose q such that $\mathcal{L} \subset Z(q)$;
homogeneize and rescale q into Q_d;
decompose $P = aQ_d + R$.
Proposition. With uniform probability, in $B(1/\sqrt{d})$,
- R does not kill the shape of $Z(Q_d)$,
Proposition. With uniform probability, in $B(1/\sqrt{d})$,
- R does not kill the shape of $Z(Q_d)$,
- there exists $\mathcal{L}' \subset Z(P)$ Lagrangian for ω_{FS}.
\[\mathcal{L} \subset Z(Q_d) \]
\(\mathcal{L} \subset Z(Q_d) \) is Lagrangian for \(\omega_0 \)
\(\mathcal{L} \subset Z(Q_d) \) is Lagrangian for \(\omega_0 \);

how to find \(\mathcal{L} \subset Z(P) \) Lagrangian for \(\omega_{FS} \)?
Facts:

- $\exists \phi, \phi(Z(Qd)) = Z(P)$

Then L' Lagrangian for ω_{FS} in $Z(P)$ \Leftrightarrow $\phi^{-1}(L')$ Lagrangian for $\phi^* \omega_{FS}$ in $Z(Qd)$.
Facts:
Facts:

- \(\exists \varphi, \varphi(Z(Q_d)) = Z(P) \).
Facts:

- \(\exists \varphi, \varphi(Z(Q_d)) = Z(P) \).
- Then

\[
\mathcal{L}' \quad \text{Lagrangian for } \omega_{FS} \quad \text{in } Z(P)
\]

\[
\Leftrightarrow
\]

\[
\varphi^{-1}(\mathcal{L}') \quad \text{Lagrangian for } \varphi^*\omega_{FS} \quad \text{in } Z(Q_d)
\]
\[\mathcal{L} \text{ Lagrangian for } \omega_0 \text{ in } Z(Q_d); \]
- \mathcal{L} Lagrangian for ω_0 in $Z(Q_d)$;
- how to find \mathcal{L}'' Lagrangian for $\varphi^*\omega_{FS}$ in $Z(Q_d)$?
Moser Trick. Let ω symplectic and exact over $Z \cap B$. Then, there exists $\psi : Z \cap B \to Z$ such that $\psi^* \omega = \omega_0$.
Moser Trick. Let ω symplectic and exact over $\mathbb{Z} \cap \mathbb{B}$. Then, there exists $\psi : \mathbb{Z} \cap \mathbb{B} \to \mathbb{Z}$ such that $\psi^*\omega = \omega_0$.

For us: $\omega = \phi^*\omega_{FS}$,

- $\mathcal{L}'' = \psi(\mathcal{L})$ is Lagrangian, for ω,
- $\mathcal{L}' = \phi \circ \psi(\mathcal{L})$ is Lagrangian for ω_{FS}
Moser Trick. Let ω symplectic and exact over $\mathbb{Z} \cap \mathbb{B}$. Then, there exists $\psi : \mathbb{Z} \cap \mathbb{B} \to \mathbb{Z}$ such that $\psi^* \omega = \omega_0$.

For us : $\omega = \phi^* \omega_{FS}$,

- $\mathcal{L}'' = \psi(\mathcal{L})$ is Lagrangian, for ω,
- $\mathcal{L}' = \phi \circ \psi(\mathcal{L})$ is Lagrangian for ω_{FS}

Objection! It could happen that ψ or ϕ sends \mathcal{L}'' out of the ball!
Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that

$\psi^* \omega = \omega_0$
Quantitative Moser Trick. Let ω symplectic and exact over $\mathbb{Z} \cap \mathbb{B}$. Then, there exists $\psi : \mathbb{Z} \cap \mathbb{B} \to \mathbb{Z}$ such that

1. $\psi^* \omega = \omega_0$
2. $|\psi - id|$ is controlled by $|\omega - \omega_0|$
Since

- ω_{FS} is close to ω_0,
Since

- ω_{FS} is close to ω_0,
- with uniform probability R is small,
Since

- ω_{FS} is close to ω_0,
- with uniform probability R is small,
- so that φ close to the identity,
Since

- \(\omega_{FS} \) is close to \(\omega_0 \),
- with uniform probability \(R \) is small,
- so that \(\varphi \) close to the identity,
- so that \(\mathcal{L}'' \) and \(\mathcal{L}' \) stay in the ball. □
From one to a lot of Lagrangians

There exists $\sim d^n$ balls of size $1/\sqrt{d}$
There exists \(d^n \) balls of size \(1/\sqrt{d} \)

With uniform probability, a uniform proportion of them contains a Lagrangian copy of \(\mathcal{L} \)
From one to a lot of Lagrangians

- There exists \(\sim d^n \) balls of size \(1/\sqrt{d} \)
- With uniform probability, a uniform proportion of them contains a Lagrangian copy of \(\mathcal{L} \)
- Deterministic conclusion: there exists at least one such hypersurface
From one to a lot of Lagrangians

- There exists $\sim d^n$ balls of size $1/\sqrt{d}$
- With uniform probability, a uniform proportion of them contains a Lagrangian copy of \mathcal{L}
- Deterministic conclusion: there exists at least one such hypersurface
- Hence, all of them have cd^n such Lagrangians.
Why non-vanishing Euler characteristics?

Fact: If \(\mathcal{L} \subset (Z, \omega, J) \) is Lagrangian, then

\[
NL \sim TL.
\]

Indeed,
\[
\omega = g(J \cdot J),
\]
so that \(JT_L \perp TL\).

\(\blacksquare\)

If moreover \(\chi(L) \neq 0\) **then**

\[
0 \neq [L] \in H^{n-1}(Z).
\]

Indeed for \(L\) orientable,
\[
\chi(L) = \# \{\text{zeros of a tangent vector field}\} = \# \{\text{zeros of a normal vector field}\} = [L] \cdot [L].
\]

\(\blacksquare\)

Corollary The only orientable compact Lagrangian in \(\mathbb{R}^4\) is the torus.
Why non-vanishing Euler characteristics?

Fact: If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

$$N\mathcal{L} \sim T\mathcal{L}.$$

Indeed, $\omega = g(\cdot, J\cdot)$, so that $JTL \perp T\mathcal{L}$. □
Why non-vanishing Euler characteristics?

Fact: If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

$$N\mathcal{L} \sim T\mathcal{L}.$$

Indeed, $\omega = g(\cdot, J\cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. □

If moreover $\chi(\mathcal{L}) \neq 0$ then

$$0 \neq [\mathcal{L}] \in H_{n-1}(Z).$$
Why non-vanishing Euler characteristics?

Fact: If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

\[NL \sim TL. \]

Indeed, $\omega = g(\cdot, J\cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. □

If moreover $\chi(\mathcal{L}) \neq 0$ then

\[0 \neq [\mathcal{L}] \in H_{n-1}(Z). \]

Indeed for \mathcal{L} orientable,

\[\chi(\mathcal{L}) = \# \{ \text{zeros of a tangent vector field} \}. \]
Why non-vanishing Euler characteristics?

Fact: If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

\[N\mathcal{L} \sim T\mathcal{L}. \]

Indeed, $\omega = g(\cdot, J\cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. □

If moreover $\chi(\mathcal{L}) \neq 0$ then

\[0 \neq [\mathcal{L}] \in H_{n-1}(Z). \]

Indeed for \mathcal{L} orientable,

\[\chi(\mathcal{L}) = \#\{ \text{zeros of a tangent vector field} \}. \]
\[= \#\{ \text{zeros of a normal vector field} \}. \]
Why non-vanishing Euler characteristics?

Fact: If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

$$N\mathcal{L} \sim T\mathcal{L}.\]$$

Indeed, $\omega = g(\cdot, J\cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. □

If moreover $\chi(\mathcal{L}) \neq 0$ then

$$0 \neq [\mathcal{L}] \in H_{n-1}(Z).$$

Indeed for \mathcal{L} orientable,

$$\chi(\mathcal{L}) = \#\{\text{zeros of a tangent vector field}\}.$$

$$= \#\{\text{zeros of a normal vector field}\}.$$

$$= [\mathcal{L}] \cdot [\mathcal{L}]. \Box$$
Why non-vanishing Euler characteristics?

Fact: If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

\[
\mathcal{N}\mathcal{L} \sim T\mathcal{L}.
\]

Indeed, $\omega = g(\cdot, J\cdot)$, so that $J T\mathcal{L} \perp T\mathcal{L}$.

If moreover $\chi(\mathcal{L}) \neq 0$ then

\[
0 \neq [\mathcal{L}] \in H_{n-1}(Z).
\]

Indeed for \mathcal{L} orientable,

\[
\chi(\mathcal{L}) = \#\{ \text{zeros of a tangent vector field} \}.
\]

\[
= \#\{ \text{zeros of a normal vector field} \}
\]

\[
= [\mathcal{L}] \cdot [\mathcal{L}].
\]

Corollary The only orientable compact Lagrangian in \mathbb{R}^4 is the torus.
The Moser trick

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.
The Moser trick

Moser Trick. Let ω symplectic and exact over $Z \cap B$. Then, there exists $\psi : Z \cap B \to Z$ such that $\psi^* \omega = \omega_0$.

Proof. Let $\omega_t := \omega_0 + t(\omega - \omega_0)$. We search $(\phi_t)_t$, such that

$$\phi_t^* \omega_t = \omega_0.$$
The Moser trick

Moser Trick. Let ω symplectic and exact over $Z \cap B$. Then, there exists $\psi : Z \cap B \to Z$ such that $\psi^* \omega = \omega_0$.

Proof. Let $\omega_t := \omega_0 + t(\omega - \omega_0)$. We search $(\phi_t)_t$, such that

$$\phi_t^* \omega_t = \omega_0.$$

Assume that $(X_t)_t$ is a generating vector field, that is

$$\partial_t \phi_t(x) = X_t(\phi_t(x)).$$
The Moser trick

Moser Trick. Let ω symplectic and exact over $\mathbb{Z} \cap \mathbb{B}$. Then, there exists $\psi : \mathbb{Z} \cap \mathbb{B} \to \mathbb{Z}$ such that $\psi^* \omega = \omega_0$.

Proof. Let $\omega_t := \omega_0 + t(\omega - \omega_0)$. We search $(\phi_t)_t$, such that

$$\phi_t^* \omega_t = \omega_0.$$

Assume that $(X_t)_t$ is a generating vector field, that is

$$\partial_t \phi_t(x) = X_t(\phi_t(x)).$$

This implies $\phi_t^*(\mathcal{L}_{X_t} \omega_t + \partial_t \omega_t) = 0$, which is true if

$$d(\omega_t(X_t, \cdot)) + \omega - \omega_0,$$

is true, which is true if

$$\omega_t(X_t, \cdot) + \lambda - \lambda_0.$$
The Moser trick

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

Proof. Let $\omega_t := \omega_0 + t(\omega - \omega_0)$. We search $(\phi_t)_t$, such that

$$\phi_t^* \omega_t = \omega_0.$$

Assume that $(X_t)_t$ is a generating vector field, that is

$$\partial_t \phi_t(x) = X_t(\phi_t(x)).$$

This implies $\phi_t^* (\mathcal{L}_{X_t} \omega_t + \partial_t \omega_t) = 0$, which is true if

$$d(\omega_t(X_t, \cdot)) + \omega - \omega_0,$$

is true, which is true if

$$\omega_t(X_t, \cdot) + \lambda - \lambda_0.$$

Since ω_t is non-degenerate, this has a solution $(X_t)_t$. □