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Topology of planar projective curves

Let P ∈ Chom
d [Z0, Z1, Z2].

Then

Z(P ) = {P = 0} ⊂ CP 2

I is generically an orientable compact smooth Riemann
surface ;

I connected ;

I with a constant genus 1
2(d− 1)(d− 2).
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I d = 1 or d = 2 : sphere

I d = 3 : torus

I d = 4 : genus g = 3

I dimChom
d [Z0, Z1, Z2] ∼d g.

I Same for the moduli space of projective curves

3/53



I d = 1 or d = 2 : sphere

I d = 3 : torus

I d = 4 : genus g = 3

I dimChom
d [Z0, Z1, Z2] ∼d g.

I Same for the moduli space of projective curves

3/53



I d = 1 or d = 2 : sphere

I d = 3 : torus

I d = 4 : genus g = 3

I dimChom
d [Z0, Z1, Z2] ∼d g.

I Same for the moduli space of projective curves

3/53



I d = 1 or d = 2 : sphere

I d = 3 : torus

I d = 4 : genus g = 3

I dimChom
d [Z0, Z1, Z2] ∼d g.

I Same for the moduli space of projective curves

3/53



I d = 1 or d = 2 : sphere

I d = 3 : torus

I d = 4 : genus g = 3

I dimChom
d [Z0, Z1, Z2] ∼d g.

I Same for the moduli space of projective curves

3/53



Very different in the real case : various number of components...
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... and various possible configurations :
16th Hilbert problem

(here the maximal degree 6 possible curves)
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Geometry of planar projective curves

What about the geometry if Z(P ) is equipped with the
restriction of the ambient metric gFS ?

I W. Wirtinger theorem : ∀P,Vol(Z(P )) = d.

I However Z can have very different shapes :

1. if P is close to Zd
0 , Z is concentrated near a round sphere,

2. if P is of high degree d and close to the product of
equidistributed d lines, then Z is equidistributed.
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Random projective curves

If P is taken at random, what can be said more ?

Theorem (B. Shiffman-S. Zelditch 1998) Almost surely, a
sequence of increasing degree random complex curves gets
equidistributed in CP 2.
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I Complex Fubini-Study measure :

P =
∑

i0+i1+i2=d

ai0i1i2
Zi0
0 Z

i1
1 Z

i2
2√

i0!i1!i2!
,

where ai0i1i2 are i.i.d. normal variables ∼ NC(0, 1).

I This is the Gaussian measure associated to the
Fubini-Study L2-scalar product on the space of
polynomials :

〈P,Q〉FS =

∫
CPn

P (Z)Q(Z)

‖Z‖2d
dvolFS .

I Generalizes for random sections of high powers of an ample
line bundle over a compact Kähler manifold.
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What about the length of the systole of the random complex
curve : its shortest non-contractible real loop ?
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The origins : hyperbolic surfaces

Let

Mg =
{

genus g compact smooth surface

with a metric of curvature − 1
}
.

I No bound for the diameters, even at fixed g.

I dimCMg = 3g − 3

I There exists a natural probability measure ProbWP onMg.

Theorem (M. Mirzakhani 2013). There exist 0 < c < 1
such that for all g ≥ 2,

c ≤ ProbWP

[
Length of the systole ≤ 1

]
≤ 1− c.
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Random projective curves

Theorem 1. There exists c > 0,

∀d� 1, c ≤ ProbFS

[
Length√dgFS

of the systole ≤ 1
]
.
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Recall that dimH1(Z) = 2g ∼ d2.

Theorem 1’ There exists c > 0,

∀d� 1, c ≤ ProbFS

[
∃ γ1, · · · , γcd2 ,∀i,Length(γi) ≤ 1

and [γ1], · · · , [γcd2 ]

is an independent family of H1

(
Z(P )

)]
.
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For every d, there exists a basis of H1(Z) such that a uniform
proportion of its elements are represented by small loops with

uniform probability
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Very useless deterministic Corollary. There exists c > 0,
such that for any genus g surface,

dimH1 ≥ cg.

In higher dimensions,

I complex curves become complex hypersurfaces ;

I non-contractible loops become Lagrangian submanifolds ;

I the useless deterministic bound becomes an non-trivial
estimate for homological (Lagrangian) representatives.
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Higher dimensions

Let P ∈ Chom
d [Z0, Z1, · · · , Zn].

Then

Z(P ) = {P = 0} ⊂ CPn

I is generically a smooth complex hypersurface, or 2n− 2
real submanifold,

I with a constant diffeomorphism type.
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I Lefschetz theorem

∀k < n− 1, Hk(Z(P )) = Hk(CPn).

Same for homotopy groups. In particular, Z is connected
for n ≥ 2 and simply connected for n ≥ 3.

I Chern computation

dimHn−1(Z) ∼ dn.

I ⇒ For n = 2, Z ⊂ CP 2 is a connected complex curve and
its interesting topology lies in H1(Z), whose dimension
grows like d2.

I ⇒ For n = 3, Z ⊂ CP 3 is a connected and simply
connected complex surface and its interesting homology lies
in H2(Z), that is for real surfaces inside it.
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Small non-trivial submanifolds

Definition. Let (Mn, g) be a compact smooth Riemannian
n-manifold. For any k ∈ {1, · · · , n}, let

sysk(M) := 2 inf
{

diamL | [L] 6= 0 in Hk(M)
}

be the Berger k-systole.

Facts :

1. Length(systole(M)) ≤ sys1(M).

2. If Hk(M) 6= 0, then sysk(M) > 0.
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Theorem 2 Assume that n is odd. Then,

∃c > 0, ∀d� 1, c ≤ Prob
[
sysn−1(Z(P )) ≤ 1.

]
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Theorem 2’ Let L ⊂ Rn odd be any compact hypersurface
with χ(L) 6= 0. Then

∃c > 0, ∀d� 1, c ≤ Prob
[
∃ L1, · · · ,Lcdn pairwise disjoint,

∀i,Li ∼diff L, diamLi ≤ 1

and [L1], · · · , [Lcdn ] form an independent family of Hn−1
(
Z(P )

)]
.

Recall : dimH∗(Z(P )) ∼d→∞ dimHn−1(Z(P )) ∼ dn.
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Deterministic corollary Let L ⊂ Rn odd be any compact
hypersurface with χ(L) 6= 0. Then

∃c > 0, ∀d� 1, ∀P ∈ Cd
hom, ∃L1, · · · ,Lcdn ⊂ Z(P )

I pairwise disjoint,

I diffeomorphic to L,

I [L1], · · · , [Lcdn ] form an independent family of Hn−1(Z(P )).

Universal phenomenon : Same holds for zeros of sections of
high powers of an ample line bundle over a compact Kähler
manifold.
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For any real hypersurface L with non-vanishing Euler
characteristic and every large enough degree, there exists a

basis of Hn−1(Z) such that a uniform proportion of its elements
are represented by submanifolds diffeomorphic to L.
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Hypersurfaces as symplectic manifolds

Recall that ωFS = gFS(·, J ·), where J is the complex structure
and gFS .

Facts :

I
(
Z(P ), ωFS|Z(P )

)
is a symplectic manifold.

I If P,Q have the same degree,(
Z(P ), ωFS|Z(P )

)
∼sympl

(
Z(Q), ωFS|Z(Q)

)
.

I Hence, if we prove that a property of symplectic nature is
true with positive probability, then it is true for any
hypersurface.
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Symplectic manifolds

(M2n, ω) is a symplectic manifold if ω is a closed
non-degenerate 2-form.

I (R2n, ω0) with ω0 :=
∑n

i=1 dxi ∧ dyi.
I Darboux theorem : locally any symplectic manifold is

symplectomorphic to (R2n, ω0).

I A real Riemannian surface (M, g) is symplectic when
equipped with its area form dVolg.

I (CPn, ωFS) is symplectic.

I Any complex hypersurface Z(P ) ⊂ CPn is symplectic for
the restriction of ωFS .

I The cotangent bundle T ∗M of a manifold is naturally
symplectic.
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Lagrangians

A Lagrangian submanifold L of (M2n, ω) is a real n-submanifold
such that ω|TL = 0.

I Any real curve of a real surface is Lagrangian.

I Easy : the only orientable compact Lagrangian in (C2, ω0)
is the 2−torus.

I Very hard : there is no Lagrangian sphere in C3 (Gromov
1985) ;

I Very easy to deform a Lagrangian : locally as much as the
differentials of real functions over it.

I The graph of a symplectomorphism is Lagrangian ;

I Motto : Lagrangians are the fundamental bricks of
symplectic manifolds and their invariants (in particular
with Floer homology).
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I If p ∈ R[z1, · · · , zn] then

Z(p) ∩ Rn

is Lagrangian in (Z(p), ω0|Z(p)).

I If P ∈ Rd
hom[Z0, · · · , Zn] then

Z(P ) ∩ RPn

is Lagrangian in (Z(P ), ωFS|Z(P )).
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Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P ,

dimH∗(Z(P )) ∼d→∞ dimHn−1(Z(P )) ∼ dn.

Theorem 2. Let L ⊂ Rn odd be any compact hypersurface with
χ(L) 6= 0. Then

∃c > 0, ∀d� 1, ∀P ∈ Cd
hom, ∃L1, · · · ,Lcdn ⊂ Z(P )

I pairwise disjoint,

I diffeomorphic to L,

I [L1], · · · , [Lcdn ] form an independent family of Hn−1(Z(P )),

I Lagrangian submanifolds of
(
Z(P ), ωFS|Z(P )

)
.
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For any real hypersurface L with non-vanishing Euler
characteristic and every large enough degree, there exists a

basis of Hn−1(Z) such that a uniform proportion of its elements
are represented by Lagrangian submanifolds diffeomorphic to L.
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Former results

From Picard-Lefschetz theory :
Theorem (S. Chmutov 1982). There exists ∼ dn√

d
disjoint

Lagrangian spheres in Z(P ).

From tropical arguments :
Theorem (G. Mikhalkin 2004). There exists cdn disjoint
Lagrangian spheres and cdn Lagrangian tori, whose classes in
Hn−1(Z(P )) are independent, with c explicit and natural.
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From random real algebraic geometry :
Theorem (with J.-Y. Welschinger 2014). Let L ⊂ Rn as
before. Then there exists (an ugly but explicit and universal)
c > 0, such that for d� 1,

c < ProbFS,R
[
∃ at least c

√
d
n

components of Z(P ) ∩ RPn

diffeomorphic to L
]
.

Corollary. At least c
√
d
n

disjoint Lagrangians diffeomorphic
to L in any Z(P ).
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Proof of Theorem 1 (systoles)

Theorem 1. There exists c > 0,

∀d� 1, c ≤ ProbFS

[
Length√dgFS

of the systole ≤ 1
]
.
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Theorem 1” There exists c > 0,

∀x ∈ CPn, ∀d� 1, c ≤ ProbFS

[
∃ γ ⊂ Z(P ) ∩B(x,

1√
d

)

Length(γ) ≤ 1√
d
,

γ non contractible
]
.
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Artificial non-contractible curve

Pick a generic Q ∈ R3
hom[Z0, Z1, Z2].

Then

Z(Q) ∼ T2 ⊂ CP 2.

By Bézout theorem Z(Q) ∩ Z(Z0) = {3 points},

Z
[
Q(1, z1, z2)

]

32/53



Artificial non-contractible curve

Pick a generic Q ∈ R3
hom[Z0, Z1, Z2]. Then

Z(Q) ∼ T2 ⊂ CP 2.
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Rescaling

Z
[
Q(1,

√
dz1,
√
dz2)

]
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Homogenization

If Qd := Zd
0Q
(

1,
√
d(Z1

Z0
, · · · , Zn

Z0
)
)

, then

Z(Qd)
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Barrier method

The random P writes

P = aQd +R,

with a ∼ NC(0, 1) and R ∈ Q⊥d random independent
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Proposition. With uniform probability in d, R does not
destroy the toric shape of Z(Qd) in B(x, 1/

√
d).
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Indeed, over B(1/
√
d) and after rescaling,

I Qd looks like the fixed polynomial

q : B ⊂ C2 → C;

I R looks like a random holomorphic function

r : B→ C;

I P looks like
aq + r : B→ C.

I Everything is asymptotically independent of d ;
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Hence,

I We can perturb q by random r on the unit ball keeping
safe the topology of Z(aq + r).

I The probability that this happens is positive ;

I The probability that Z(aQr +R) has the good topology is
uniformly positive.

I Hence the Proposition.
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There is at least ∼ d2 disjoint small balls
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With uniform probability, a uniform proportion of these d2 balls
contain the affine torus
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Why 1/
√
d ?

I ‖Zd
0‖FS

(
[1 : z√

d
]
)

=
|Zd

0 |
|Z|d =

(
1 + |z|2

d

)−d/2 ∼d e
− 1

2
|z|2 .

I This means that 1/
√
d is the natural scale of the geometry

of degree d algebraic hypersurfaces.

I Universal semi-classical phenomenon : same for sections of
an holomorphic line bundles over a complex projective
manifold. Reason : universality of peak sections or
universal asymptotic behavior of the Bergmann kernel.
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Ideas of the proof of Theorem 2

Theorem (Alexander 1936). Every compact smooth real
hypersurface L in Rn can be C1-perturbed into a component L′
of an algebraic hypersurface.

42/53



Ideas of the proof of Theorem 2

Theorem (Alexander 1936). Every compact smooth real
hypersurface L in Rn can be C1-perturbed into a component L′
of an algebraic hypersurface.

42/53



I Choose q such that L ⊂ Z(q) ;

I homogeneize and rescale q into Qd ;

I decompose P = aQd +R.
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Proposition. With uniform probability, in B(1/
√
d),

I R does not kill the shape of Z(Qd),

I there exists L′ ⊂ Z(P ) Lagrangian for ωFS .
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I L ⊂ Z(Qd)

is Lagrangian for ω0 ;

I how to find L′ ⊂ Z(P ) Lagrangian for ωFS ?
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Facts :
I ∃ϕ, ϕ(Z(Qd)) = Z(P ).
I Then

L′ Lagrangian for ωFS in Z(P)

⇔
ϕ−1(L′) Lagrangian for ϕ∗ωFS in Z(Qd)
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Moser Trick. Let ω symplectic and exact over Z ∩ B. Then,
there exists ψ : Z ∩ B→ Z such that ψ∗ω = ω0.

For us : ω = φ∗ωFS ,

I L′′ = ψ(L) is Lagrangian, for ω,

I L′ = φ ◦ ψ(L) is Lagrangian for ωFS

Objection ! It could happen that ψ or ϕ sends L′′ out of the
ball !
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Quantitative

Moser Trick. Let ω symplectic and exact over
Z ∩ B. Then, there exists ψ : Z ∩ B→ Z such that

I ψ∗ω = ω0

I |ψ − id| is controlled by |ω − ω0|
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Since

I ωFS is close to ω0,

I with uniform probability R is small,

I so that ϕ close to the identity,

I so that L′′ and L′ stay in the ball. �
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From one to a lot of Lagrangians

I There exists ∼ dn balls of size 1/
√
d

I With uniform probability, a uniform proportion of them
contains a Lagrangian copy of L

I Deterministic conclusion : there exists at least one such
hypersurface

I Hence, all of them have cdn such Lagrangians.
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Why non-vanishing Euler characteristics ?

Fact : If L ⊂ (Z, ω, J) is Lagrangian, then

I
NL ∼ TL.

Indeed, ω = g(·, J ·), so that JTL ⊥ TL. �

I If moreover χ(L) 6= 0 then

0 6= [L] ∈ Hn−1(Z).

Indeed for L orientable,

χ(L) = #{ zeros of a tangent vector field}.
= #{ zeros of a normal vector field}
= [L] · [L]. �

Corollary The only orientable compact Lagrangian in R4 is
the torus.
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The Moser trick
Moser Trick. Let ω symplectic and exact over Z ∩ B. Then,
there exists ψ : Z ∩ B→ Z such that ψ∗ω = ω0.

Proof. Let ωt := ω0 + t(ω − ω0). We search (φt)t, such that

φ∗tωt = ω0.

Assume that (Xt)t is a generating vector field, that is

∂tφt(x) = Xt(φt(x)).

This implies φ∗t
(
LXtωt + ∂tωt

)
= 0, which is true if

d
(
ωt(Xt, ·)

)
+ ω − ω0,

is true, which is true if

ωt(Xt, ·) + λ− λ0.

Since ωt is non-degenerate, this has a solution (Xt)t. �
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