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Topology of planar projective curves

Let P € Chom[Zy, Zv, Zs).
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Topology of planar projective curves

Let P € Cho™([Zy, Zy, Zy). Then

Z(P)={P =0} CCP?

> is generically an orientable compact smooth Riemann
surface ;

> connected ;
> with a constant genus (d —1)(d — 2).
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> d=1ord=2: sphere
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> d=1ord=2: sphere

> d=3: torus

> d=4:genus g=3

> dim(CZom[Zo,Zl,Zg] ~dg-

» Same for the moduli space of projective curves



Very different in the real case : various number of components...
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DO O

... and various possible configurations :
16th Hilbert problem
(here the maximal degree 6 possible curves)

Co5o®



Geometry of planar projective curves

What about the geometry if Z(P) is equipped with the
restriction of the ambient metric grg ?
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Geometry of planar projective curves

What about the geometry if Z(P) is equipped with the
restriction of the ambient metric grg ?

» W. Wirtinger theorem : VP, Vol(Z(P)) = d.
» However Z can have very different shapes :

1. if P is close to Zg, Z is concentrated near a round sphere,
2. if P is of high degree d and close to the product of
equidistributed d lines, then Z is equidistributed.
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Random projective curves

If P is taken at random, what can be said more ?
Theorem (B. Shiffman-S. Zelditch 1998) Almost surely, a

sequence of increasing degree random complex curves gets
equidistributed in CP?.
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» Complex Fubini-Study measure :
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» Complex Fubini-Study measure :

10 711 r712

p_ e ZO Zl Z2
- 102112 0 0 0 )
Z NI

. X . 10'11%192.
io+i1+iz=d 0r01-%2

where a;y;,i, are i.i.d. normal variables ~ N¢(0,1).
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» Complex Fubini-Study measure :

i0 711 iz

P= ¥ w204 %
— 101119 — )
\/'LO!'Ll!'LQ!

io+1i1+i2=d

where a;y;,i, are i.i.d. normal variables ~ N¢(0,1).

» This is the Gaussian measure associated to the
Fubini-Study L2-scalar product on the space of
polynomials :
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» Complex Fubini-Study measure :

10 701 r712

P = E Qi s ZO Zl Z2
- 101112 17
\/'LO!'Ll!'LQ!

10+1i1+i2=d

where a;y;,i, are i.i.d. normal variables ~ N¢(0,1).

» This is the Gaussian measure associated to the
Fubini-Study L2-scalar product on the space of
polynomials :

P(2)Q(2)

<P7 Q>FS :/ 7”2”% dvolpg.

cpr

» Generalizes for random sections of high powers of an ample
line bundle over a compact Kéhler manifold.



What about the length of the systole of the random complex
curve : its shortest non-contractible real loop 7
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The origins : hyperbolic surfaces
Let

M, = { genus g compact smooth surface

with a metric of curvature — 1}.
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The origins : hyperbolic surfaces
Let

M, = { genus g compact smooth surface

with a metric of curvature — 1}.

» No bound for the diameters, even at fixed g.
» dimc My, =39 -3

» There exists a natural probability measure Proby p on M,.

Theorem (M. Mirzakhani 2013). There exist 0 < ¢ < 1
such that for all g > 2,

c < Probyp [Length of the systole < 1] <1l-ec
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Random projective curves

Theorem 1. There exists ¢ > 0,

Vd > 1, ¢ < Probpg [Length\/ang of the systole < 1].
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Recall that dim H;(Z) = 2g ~ d>.
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Recall that dim H;(Z) = 2g ~ d>.
Theorem 1’ There exists ¢ > 0,

Vd > 1, ¢ < Probpg|3 71, ,Veaz, Vi, Length(v;) <1

[rycd2 ]

and [’Yl],' T
is an independent family of H;(Z (P))]
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For every d, there exists a basis of H;(Z) such that a uniform
proportion of its elements are represented by small loops with
uniform probability
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Very useless deterministic Corollary. There exists ¢ > 0,
such that for any genus g surface,

dim H; > cg.
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Very useless deterministic Corollary. There exists ¢ > 0,
such that for any genus g surface,

dim H; > cg.

In higher dimensions,
» complex curves become complex hypersurfaces ;
» non-contractible loops become Lagrangian submanifolds ;

P the useless deterministic bound becomes an non-trivial
estimate for homological (Lagrangian) representatives.
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Higher dimensions

Let P € Chom[Zy, 21, , Zy).
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Higher dimensions

Let P € Chom[Zy, Z1,+ -+ , Z,). Then

Z(P)={P =0} cCP"

» is generically a smooth complex hypersurface, or 2n — 2
real submanifold,

» with a constant diffeomorphism type.
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» Lefschetz theorem

Vk < n—1, Hy(Z(P)) = Hy(CP™).
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Lefschetz theorem
Vk <n—1, H(Z(P)) = H,(CP").

Same for homotopy groups. In particular, Z is connected
for n > 2 and simply connected for n > 3.

Chern computation

dim anl(Z) ~ dn

= For n =2, Z C CP? is a connected complex curve and
its interesting topology lies in H;(Z), whose dimension
grows like d2.

= For n =3, Z C CP3 is a connected and simply

connected complex surface and its interesting homology lies
in Ho(Z), that is for real surfaces inside it.



Small non-trivial submanifolds

Definition. Let (M™,g) be a compact smooth Riemannian
n-manifold. For any k € {1,--- ,n}, let

sysp(M) := 2inf {diamL | [£] # 0 in Hy(M)}

be the Berger k-systole.
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Small non-trivial submanifolds

Definition. Let (M",g) be a compact smooth Riemannian
n-manifold. For any k € {1,--- ,n}, let

sysp(M) := 2inf {diamL | [£] # 0 in Hy(M)}

be the Berger k-systole. Facts :
1. Length(systole(M)) < sys;(M).
2. If Hi(M) # 0, then sys, (M) > 0.
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Theorem 2 Assume that n is odd. Then,

Jc>0,Vd>1, ¢< Prob[sysn_l(Z(P)) < 1.]
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Theorem 2’ Let £ C R™°4d be any compact hypersurface
with x(£) # 0. Then

de>0, Vd>1, ¢ < Prob[fl Ly,

, Legn pairwise disjoint,

Vi,ﬁz ~dif f [,, diamﬁi < 1
and [L41],-- -, [Legn] form an independent family of H,,_; (Z(P))}
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Theorem 2’ Let £ C R™°4d be any compact hypersurface
with x(£) # 0. Then

Je >0, Vd > 1, ¢ < Prob [EI L1, , Legn pairwise disjoint,
Vi,ﬁi ~dif f [,, diamﬁi < 1
and [L41],-- -, [Legn] form an independent family of H,,_; (Z(P))}

Recall : dim H,(Z(P)) ~g—oo dim H,,_1(Z(P)) ~ d".



Deterministic corollary Let £ C R™°% be any compact
hypersurface with x(£) # 0. Then

Je>0,¥d>1, VP eCs, L1, -, Legn C Z(P)

P pairwise disjoint,
» diffeomorphic to L,
» [L4], -+, [Legn] form an independent family of H,,_1(Z(P)).
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Deterministic corollary Let £ C R™°% be any compact
hypersurface with x(£) # 0. Then

Je>0,¥d>1, VP eCs, L1, -, Legn C Z(P)

P pairwise disjoint,
» diffeomorphic to L,
» [L1], -+, [Leqn] form an independent family of H,_1(Z(P)).

Universal phenomenon : Same holds for zeros of sections of
high powers of an ample line bundle over a compact Kéhler
manifold.



For any real hypersurface £ with non-vanishing Euler
characteristic and every large enough degree, there exists a
basis of H,_1(Z) such that a uniform proportion of its elements
are represented by submanifolds diffeomorphic to L.
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Hypersurfaces as symplectic manifolds

Recall that wpg = grs(+, J+), where J is the complex structure
and grg.
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Hypersurfaces as symplectic manifolds

22 /53

Recall that wpg = grs(+, J+), where J is the complex structure
and grg.

Facts :
> (Z(P), WFs|Z(p)) is a symplectic manifold.
> If P, have the same degree,

(Z(P),wrs)z(p)) ~symp (Z(Q):wrs|2(Q))-
» Hence, if we prove that a property of symplectic nature is

true with positive probability, then it is true for any
hypersurface.
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(M?",w) is a symplectic manifold if w is a closed
non-degenerate 2-form.

>
>

>

(RQn,WQ) with wg := Z?:l dx; N\ dy;.

Darboux theorem : locally any symplectic manifold is
symplectomorphic to (R?",wp).

A real Riemannian surface (M, g) is symplectic when
equipped with its area form dVol,.

(CP",wpg) is symplectic.

Any complex hypersurface Z(P) C CP™ is symplectic for
the restriction of wrg.

The cotangent bundle T*M of a manifold is naturally
symplectic.



Lagrangians

A Lagrangian submanifold L of (M?",w) is a real n-submanifold
such that wypy = 0.
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Lagrangians

A Lagrangian submanifold L of (M?",w) is a real n-submanifold
such that wypy = 0.

» Any real curve of a real surface is Lagrangian.

27“0)

» Easy : the only orientable compact Lagrangian in (C
is the 2—torus.

» Very hard : there is no Lagrangian sphere in C* (Gromov
1985) ;

» Very easy to deform a Lagrangian : locally as much as the
differentials of real functions over it.

» The graph of a symplectomorphism is Lagrangian ;

> Motto : Lagrangians are the fundamental bricks of
symplectic manifolds and their invariants (in particular
with Floer homology).
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Z(p)N R"

» If pe Rz, -, 2,) then
Z(p) NR"
is Lagrangian in (Z(p), wo|z(p))-
> If PeRY [Zo, -, Zy) then

Z(P)NRP"

is Lagrangian in (Z(P),wpg|z(p))-

R"
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Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,
dim H,(Z(P)) ~d—oo dim H,_1(Z(P)) ~ d".

Theorem 2. Let £ C R”°4 be any compact hypersurface with
X(£) # 0. Then

Je>0,Vd>1, VP eCy,, L1, -, Lean C Z(P)

P pairwise disjoint,

» diffeomorphic to L,

» [L4],--,[Legn] form an independent family of H,,_1(Z(P)),
» Lagrangian submanifolds of (Z(P),wFS|Z(p)).

26 /53



For any real hypersurface £ with non-vanishing Euler
characteristic and every large enough degree, there exists a
basis of H,_1(Z) such that a uniform proportion of its elements
are represented by Lagrangian submanifolds diffeomorphic to L.
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Former results

From Picard-Lefschetz theory :

Theorem (S. Chmutov 1982). There exists ~ % disjoint

Lagrangian spheres in Z(P).

28 /53



Former results

28 /53

From Picard-Lefschetz theory :

Theorem (S. Chmutov 1982). There exists ~ % disjoint

Lagrangian spheres in Z(P).

From tropical arguments :

Theorem (G. Mikhalkin 2004). There exists c¢d™ disjoint
Lagrangian spheres and cd" Lagrangian tori, whose classes in
H,_1(Z(P)) are independent, with ¢ explicit and natural.
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From random real algebraic geometry :

Theorem (with J.-Y. Welschinger 2014). Let £ C R" as
before. Then there exists (an ugly but explicit and universal)
¢ > 0, such that for d > 1,

¢ < Probpsr [Ei at least cVd' components of Z(P) NRP"
diffeomorphic to E].
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From random real algebraic geometry :

Theorem (with J.-Y. Welschinger 2014). Let £ C R" as
before. Then there exists (an ugly but explicit and universal)
¢ > 0, such that for d > 1,

¢ < Probpsr [Ei at least cVd' components of Z(P) NRP"
diffeomorphic to E].

Corollary. At least evd' disjoint Lagrangians diffeomorphic
to £ in any Z(P).



Proof of Theorem 1 (systoles)

Theorem 1. There exists ¢ > 0,

Vd > 1, ¢ < Probpg [Length\/ang of the systole < 1].
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Theorem 1” There exists ¢ > 0,

Vx € CP",Vd > 1, ¢ < Probpg|3 v C Z(P) N B(x,

Sl-2-

Length(7) <

~ non contractible|.

[

)



Artificial non-contractible curve

Pick a generic Q € R} [Zy, Z1, Zo).

hom
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Artificial non-contractible curve

Pick a generic Q € R} [Zo, Z1, Z5]. Then

hom
Z(Q) ~ T? c CP2.

By Bézout theorem Z(Q)N Z(Zy) = {3 points},

/\

Z[Q(l,zl,zz)}
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Rescaling

\

IS

-

Z[Q(l, Vidz, \/322)}
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Homogenization
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Homogenization

If Qd = ZgQ(l,\/&(%, e 7%))7 then
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Barrier method

The random P writes

P = aQq+R,
with a ~ Nc(0,1) and R € Qi random independent
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Barrier method

The random P writes

P = aQq+R,
with a ~ Nc(0,1) and R € Qi random independent
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~_ - Z(aQs + R)

Proposition. With uniform probability in d, R does not
destroy the toric shape of Z(Qq) in B(z,1/Vd).
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Indeed, over B(1/v/d) and after rescaling,
> (4 looks like the fixed polynomial

¢:BcC?—=C;

> R looks like a random holomorphic function

r:B— C;

» P looks like
ag+r:B— C.

> Everything is asymptotically independent of d;

37/53



Hence,

» We can perturb ¢ by random r on the unit ball keeping
safe the topology of Z(aq + r).
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Hence,

» We can perturb ¢ by random r on the unit ball keeping
safe the topology of Z(aq + r).

» The probability that this happens is positive;

» The probability that Z(a@, + R) has the good topology is
uniformly positive.

» Hence the Proposition.
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There is at least ~ d? disjoint small balls



With uniform probability, a uniform proportion of these d? balls
contain the affine torus
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Why 1/v/d?

d

> 1Z8lrs (11 Z5)) = G = (14 B) 77 g e

» This means that 1/ V/d is the natural scale of the geometry
of degree d algebraic hypersurfaces.

» Universal semi-classical phenomenon : same for sections of
an holomorphic line bundles over a complex projective
manifold. Reason : universality of peak sections or
universal asymptotic behavior of the Bergmann kernel.
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Ideas of the proof of Theorem 2

Theorem (Alexander 1936). Every compact smooth real
hypersurface £ in R™ can be C'-perturbed into a component £’
of an algebraic hypersurface.
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43/53



» Choose ¢ such that £ C Z(q);

» homogeneize and rescale ¢ into Qg ;
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» Choose ¢ such that £ C Z(q);
» homogeneize and rescale ¢ into Qg ;
» decompose P = aQy + R.

43/53




Proposition. With uniform probability, in B(1/v/d),
» R does not kill the shape of Z(Qq),
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Proposition. With uniform probability, in B(1/v/d),
» R does not kill the shape of Z(Qq),
» there exists £ C Z(P) Lagrangian for wpg.
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» L C Z(Qq)is Lagrangian for wp;
» how to find £ C Z(P) Lagrangian for wpg ?
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Facts :

> 3o, p(Z(Qq)) = Z(P).

Ln’



L
©
Facts :
> 3o, p(Z(Qq)) = Z(P).
» Then

L Lagrangian for wrg in Z(P)
~
o Y(L£') Lagrangian for o*wps in Z(Qq)
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» £ Lagrangian for wy in Z(Qq);
» how to find £” Lagrangian for p*wpg in Z(Qq)?
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Moser Trick. Let w symplectic and exact over Z N B. Then,
there exists ¢ : ZNB — Z such that ¥*w = wy.
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Moser Trick. Let w symplectic and exact over Z N B. Then,
there exists ¢ : ZNB — Z such that ¥*w = wy.

For us : w = ¢*wpg,

» L =1(L) is Lagrangian, for w,
> L' = ¢o(L) is Lagrangian for wpg
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©
Moser Trick. Let w symplectic and exact over Z N B. Then,
there exists ¢ : ZNB — Z such that ¥*w = wy.

For us : w = ¢*wpg,
» L =1(L) is Lagrangian, for w,
> L' = ¢o(L) is Lagrangian for wpg

Objection! It could happen that v or ¢ sends £” out of the
ball!



Moser Trick. Let w symplectic and exact over
Z N B. Then, there exists ¢ : ZNB — Z such that

> *w = wp
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Quantitative Moser Trick. Let w symplectic and exact over
Z N B. Then, there exists ¢ : ZNB — Z such that

> *w = wp
» |¢) — id| is controlled by |w — wpl
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» with uniform probability R is small,

50/53



Since
> wrg is close to wy,
» with uniform probability R is small,
P> so that ¢ close to the identity,
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Since
> wrg is close to wy,
» with uniform probability R is small,
P> so that ¢ close to the identity,
» so that £” and L’ stay in the ball. O
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From one to a lot of Lagrangians

Z(P)c CP"

» There exists ~ d" balls of size 1/v/d

» With uniform probability, a uniform proportion of them
contains a Lagrangian copy of £
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contains a Lagrangian copy of £

» Deterministic conclusion : there exists at least one such
hypersurface
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From one to a lot of Lagrangians

» There exists ~ d" balls of size 1/v/d

» With uniform probability, a uniform proportion of them
contains a Lagrangian copy of £

» Deterministic conclusion : there exists at least one such
hypersurface

» Hence, all of them have cd™ such Lagrangians.
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Why non-vanishing Fuler characteristics ?

Fact : If £ C (Z,w,J) is Lagrangian, then
>
NL~TL.
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Why non-vanishing Fuler characteristics ?

Fact : If £ C (Z,w,J) is Lagrangian, then
>
NL~TL.

Indeed, w = g(+,J+), so that JTL L TL. O
» If moreover x(L£) # 0 then

0+ [L] € Hy1(2).
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Fact : If £ C (Z,w,J) is Lagrangian, then
>
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Indeed for £ orientable,

X(L) = #{ zeros of a tangent vector field}.
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Fact : If £ C (Z,w,J) is Lagrangian, then
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NL~TL.

Indeed, w = g(+,J+), so that JTL L TL. O
» If moreover x(L£) # 0 then

0+#I[L] € Hy—1(Z).
Indeed for £ orientable,
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Why non-vanishing Euler characteristics 7

Fact : If £ C (Z,w,J) is Lagrangian, then
>
NL~TL.
Indeed, w = g(+,J+), so that JTL L TL. O
» If moreover x(L£) # 0 then

0+# (L] € Hy—1(2).
Indeed for £ orientable,

X(L) = #{ zeros of a tangent vector field}.
= #{ zeros of a normal vector field}

= [£-[4.0

Corollary The only orientable compact Lagrangian in R* is
the torus.
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The Moser trick

Moser Trick. Let w symplectic and exact over Z N B. Then,
there exists 1 : Z NB — Z such that ¢*w = wy.
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Moser Trick. Let w symplectic and exact over Z N B. Then,
there exists ¢ : ZNB — Z such that ¥*w = wy.

Proof. Let w; :=wy + t(w — wp). We search (¢¢)¢, such that

P wr = wo.
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Moser Trick. Let w symplectic and exact over Z N B. Then,
there exists ¢ : ZNB — Z such that ¥*w = wy.

Proof. Let w; :=wy + t(w — wp). We search (¢¢)¢, such that
dfwr = wp.

Assume that (X;); is a generating vector field, that is
Odr(x) = Xy(de(x)).
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The Moser trick

Moser Trick. Let w symplectic and exact over Z N B. Then,
there exists ¢ : ZNB — Z such that ¥*w = wy.

Proof. Let w; :=wy + t(w — wp). We search (¢¢)¢, such that
prwt = wo.
Assume that (X;); is a generating vector field, that is
Odr(x) = Xy(de(x)).
This implies ¢} (E X, Wt + Otwt) = 0, which is true if
d(wi(X¢, ) +w — wo,
is true, which is true if

wt(Xt, ) + /\ — /\0.
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The Moser trick

Moser Trick. Let w symplectic and exact over Z N B. Then,
there exists ¢ : ZNB — Z such that ¥*w = wy.

Proof. Let w; := wp + t(w — wp). We search (¢)¢, such that
prwt = wo.
Assume that (X;); is a generating vector field, that is
Odr(x) = Xy(de(x)).
This implies ¢} (E X, Wt + Otwt) = 0, which is true if
d(wi(X¢, ) +w — wo,
is true, which is true if
we(Xe, o) + A = Xo.

Since w; is non-degenerate, this has a solution (X;):. O
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